13. References

References

[Adc95]A. Adcroft. Numerical Algorithms for use in a Dynamical Model of the Ocean. PhD thesis, Imperial College, London, 1995.
[AC04]A. Adcroft and J.-M. Campin. Re-scaled height coordinates for accurate representation of free-surface flows in ocean circulation models. Ocean Modelling, 7:269–284, 2004. doi:10.1016/j.ocemod.2003.09.003.
[ACHM04]A. Adcroft, J.-M. Campin, C. Hill, and J. Marshall. Implementation of an atmosphere-ocean general circulation model on the expanded spherical cube. Mon.~Wea.~Rev., 132:2845–2863, 2004. URL: http://mitgcm.org/pdfs/mwr_2004.pdf, doi:10.1175/MWR2823.1.
[AHCampin+04]A. Adcroft, C. Hill, J.-M. Campin,, J. Marshall, and P. Heimbach. Overview of the formulation and numerics of the MITgcm. In Proceedings of the ECMWF seminar series on Numerical Methods, Recent developments in numerical methods for atmosphere and ocean modelling, 139–149. ECMWF, 2004. URL: http://mitgcm.org/pdfs/ECMWF2004-Adcroft.pdf.
[AHM99]A., Adcroft, C. Hill, and J. Marshall. A new treatment of the coriolis terms in c-grid models at both high and low resolutions. Mon.~Wea.~Rev., 127:1928–1936, 1999. URL: http://mitgcm.org/pdfs/mwr_1999.pdf, doi:10.1175/1520-0493%281999%29127<1928:ANTOTC>2.0.CO;2.
[AHM97]A.J. Adcroft, C.N. Hill, and J. Marshall. Representation of topography by shaved cells in a height coordinate ocean model. Mon.~Wea.~Rev., 125:2293–2315, 1997. URL: http://mitgcm.org/pdfs/mwr_1997.pdf, doi:10.1175/1520-0493%281997%29125<2293:ROTBSC>2.0.CO;2.
[AM98]A.J. Adcroft and D. Marshall. How slippery are piecewise-constant coastlines in numerical ocean models? Tellus, 50(1):95–108, 1998.
[AL77]A. Arakawa and V. Lamb. Computational design of the basic dynamical processes of the ucla general circulation model. Meth. Comput. Phys., 17:174–267, 1977.
[BFLM13]S. Bouillon, T. Fichefet, V. Legat, and G. Madec. The elastic-viscous-plastic method revisited. Ocean Modelling, 71(0):2–12, 2013. Arctic Ocean. URL: http://dx.doi.org/10.1016/j.ocemod.2013.05.013, doi:10.1016/j.ocemod.2013.05.013.
[BMP75]K. Bryan, S. Manabe, and R.C. Pacanowski. A global ocean-atmosphere climate model. part ii. the oceanic circulation. J.~Phys.~Oceanogr., 5:30–46, 1975.
[CAHM04]J.-M. Campin, A. Adcroft, C. Hill, and J. Marshall. Conservation of properties in a free-surface model. Ocean Modelling, 6:221–244, 2004.
[CMF08]J.-M. Campin, J. Marshall, and D. Ferreira. Sea-ice ocean coupling using a rescaled vertical coordinate z$^\ast $. Ocean Modelling, 24(1–2):1–14, 2008. doi:10.1016/j.ocemod.2008.05.005.
[CMKL+14]K. Castro-Morales, F. Kauker, M. Losch, S. Hendricks, K. Riemann-Campe, and R. Gerdes. Sensitivity of simulated Arctic sea ice to realistic ice thickness distributions and snow parameterizations. J.~Geophys.~Res., 119(1):559–571, 2014. URL: http://dx.doi.org/10.1002/2013JC009342, doi:10.1002/2013JC009342.
[Cho90]M-D. Chou. Parameterizations for the absorption of solar radiation by o$_2$ and co$_2$ with applications to climate studies. J.~Clim., 3:209–217, 1990.
[Cho92]M-D. Chou. A solar radiation model for use in climate studies. J.~Atmos.~Sci., 49:762–772, 1992.
[CS94]M-D. Chou and M.J. Suarez. An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Technical Memorandum 104606-Vol 3, National Aeronautics and Space Administration, NASA; Goddard Space Flight Center; Greenbelt (MD), 20771; USA, 1994. http://www.gmao.nasa.gov/.
[Cla70]R.H. Clarke. Observational studies in the atmospheric boundary layer. Q.~J.~R.~Meteorol.~Soc., 96:91–114, 1970.
[Cox87]M.D. Cox. An isopycnal diffusion in a z-coordinate ocean model. Ocean modelling, 74:1–5 (Unpublished manuscript), 1987.
[DT94]R.S. Defries and J.R.G. Townshend. Ndvi-derived land cover classification at global scales. Int’l J. Rem. Sens., 15:3567–3586, 1994.
[DS89]J.L. Dorman and P.J. Sellers. A global climatology of albedo, roughness length and stomatal resistance for atmospheric general circulation models as represented by the simple biosphere model (sib). J.~Appl.~Meteor., 28:833–855, 1989.
[FWDH92]G.M. Flato and III W.D. Hibler. Modeling pack ice as a cavitating fluid. J.~Phys.~Oceanogr., 22:626–651, 1992.
[FRM83]P. Fofonoff and Jr. R. Millard. Algorithms for computation of fundamental properties of seawater. UNESCO Technical Papers in Marine Science 44, UNESCO, Paris, 1983.
[FCH+15]G. Forget, J.-M. Campin, P. Heimbach, C. N. Hill, R. M Ponte, and C. Wunsch. ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation. Geoscientific Model Development, 8(10):3071–3104, 2015. URL: http://www.geosci-model-dev.net/8/3071/2015/, doi:10.5194/gmd-8-3071-2015.
[FWL+15]Ichiro Fukumori, Ou Wang, William Llovel, Ian Fenty, and Gael Forget. A near-uniform fluctuation of ocean bottom pressure and sea level across the deep ocean basins of the arctic ocean and the nordic seas. Progress in Oceanography, 134(0):152 – 172, 2015. URL: http://www.sciencedirect.com/science/article/pii/S0079661115000245, doi:http://dx.doi.org/10.1016/j.pocean.2015.01.013.
[GGL90]P. Gaspar, Y. Grégoris, and J.-M. Lefevre. A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: tests at station papa and long-term upper ocean study site. J.~Geophys.~Res., 95 (C9):16,179–16,193, 1990.
[GM90]P.R. Gent and J.C. McWilliams. Isopycnal mixing in ocean circulation models. J.~Phys.~Oceanogr., 20:150–155, 1990.
[GWMM95]P.R. Gent, J. Willebrand, T.J. McDougall, and J.C. McWilliams. Parameterizing eddy-induced tracer transports in ocean circulation models. J.~Phys.~Oceanogr., 25:463–474, 1995.
[GKW91]R. Gerdes, C. Koberle, and J. Willebrand. The influence of numerical advection schemes on the results of ocean general circulation models. Clim.~Dynamics, 5(4):211–226, 1991. doi:10.1007/BF00210006.
[GL89]J.C. Gilbert and C. Lemaréchal. Some numerical experiments with variable-storage quasi-newton algorithms. Math. Programming, 45:407–435, 1989.
[Gil82]A.E. Gill. Atmosphere-Ocean Dynamics. Academic Press, New York, 1982.
[Gri98]S.M. Griffies. The Gent-McWilliams skew flux. J.~Phys.~Oceanogr., 28:831–841, 1998.
[GGP+98]S.M. Griffies, A. Gnanadesikan, R.C. Pacanowski, V. Larichev, J.K. Dukowicz, and R.D. Smith. Isoneutral diffusion in a z-coordinate ocean model. J.~Phys.~Oceanogr., 28:805–830, 1998.
[GH00]S.M. Griffies and R.W. Hallberg. Biharmonic friction with a smagorinsky-like viscosity for use in large-scale eddy-permitting ocean models. Mon.~Wea.~Rev., 128(8):2935–2946, 2000.
[HW65]F.H. Harlow and J.E. Welch. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Physics of Fluids, 8:2182–2189, 1965.
[HWP+11]Patrick Heimbach, Carl Wunsch, Rui M Ponte, Gael Forget, Chris Hill, and Jean Utke. Timescales and regions of the sensitivity of Atlantic meridional volume and heat transport: toward observing system design. Deep Sea Research Part II: Topical Studies in Oceanography, 58(17):1858–1879, 2011.
[HS94]I.M. Held and M.J. Suarez. A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bulletin of the American Meteorological Society, 75(10):1825–1830, 1994.
[HL88]H.M. Helfand and J.C. Labraga. Design of a non-singular level 2.5 second-order closure model for the prediction of atmospheric turbulence. J.~Atmos.~Sci., 45:113–132, 1988.
[HS95]H.M. Helfand and S.D. Schubert. Climatology of the simulated great plains low-level jet and its contribution to the continental moisture budget of the united states. J.~Clim., 8:784–806, 1995.
[Hib79]W.D. Hibler, III. A dynamic thermodynamic sea ice model. J.~Phys.~Oceanogr., 9:815–846, 1979.
[Hib80]W.D. Hibler, III. Modeling a variable thickness sea ice cover. Mon.~Wea.~Rev., 1:1943–1973, 1980.
[Hib84]W.D. Hibler, III. The role of sea ice dynamics in modeling co$_2$ increases. In J. E. Hansen and T. Takahashi, editors, Climate processes and climate sensitivity, volume 29 of Geophysical Monograph, pages 238–253. AGU, Washington, D.C., 1984.
[HB87]W.D. Hibler, III and K. Bryan. A diagnostic ice-ocean model. J.~Phys.~Oceanogr., 17(7):987–1015, 1987.
[HAJM99]C. Hill, A. Adcroft, D. Jamous, and John Marshall. A strategy for terascale climate modeling. In In Proceedings of the Eighth ECMWF Workshop on the Use of Parallel Processors in Meteorology, 406–425. World Scientific, 1999.
[HM95]C. Hill and J. Marshall. Application of a parallel navier-stokes model to ocean circulation in parallel computational fluid dynamics. In N. Satofuka A. Ecer, J. Periaux and S. Taylor, editors, Implementations and Results Using Parallel Computers, pages 545–552. Elsevier Science B.V.: New York, 1995.
[Hol78]W.R. Holland. The role of mesoscale eddies in the general circulation of the ocean-numerical experiments using a wind-driven quasi-geostrophic model. J.~Phys.~Oceanogr., 8:363–392, 1978.
[HL75]W.R. Holland and L.B. Lin. On the origin of mesoscale eddies and their contribution to the general circulation of the ocean. i. a preliminary numerical experiment. J.~Phys.~Oceanogr., 5:642–657, 1975.
[Hun01]E.C. Hunke. Viscous-plastic sea ice dynamics with the EVP model: linearization issues. J.~Comput.~Phys., 170:18–38, 2001. doi:10.1006/jcph.2001.6710.
[HD97]E.C. Hunke and J.K. Dukowicz. An elastic-viscous-plastic model for sea ice dynamics. J.~Phys.~Oceanogr., 27:1849–1867, 1997.
[HJL04]J.K. Hutchings, H. Jasak, and S.W. Laxon. A strength implicit correction scheme for the viscous-plastic sea ice model. Ocean Modelling, 7(1–2):111–133, 2004. doi:10.1016/S1463-5003(03)00040-4.
[JM95]D. R. Jackett and T. J. McDougall. Minimal adjustment of hydrographic profiles to achieve static stability. J.~Atmos.~Ocean.~Technol., 12(4):381–389, 1995.
[KDL15]M. Kimmritz, S. Danilov, and M. Losch. On the convergence of the modified elastic-viscous-plastic method of solving for sea-ice dynamics. J.~Comput.~Phys., 296:90–100, 2015. doi:10.1016/j.jcp.2015.04.051.
[KDL16]M. Kimmritz, S. Danilov, and M. Losch. The adaptive EVP method for solving the sea ice momentum equation. Ocean Modelling, 101:59–67, 2016. doi:10.1016/j.ocemod.2016.03.004.
[KL10]J.M. Klymak and S.M. Legg. A simple mixing scheme for models that resolve breaking internal waves. Ocean Modelling, 33:224–234, 2010. doi:10.1016/j.ocemod.2010.02.005.
[Kon75]J. Kondo. Air-sea bulk transfer coefficients in diabatic conditions. Bound.~Layer~Meteorol., 9:91–112, 1975.
[KS91]R.D. Koster and M.J. Suarez. A simplified treatment of sib’s land surface albedo parameterization. NASA Technical Memorandum 104538, National Aeronautics and Space Administration, NASA; Goddard Space Flight Center; Greenbelt (MD), 20771; USA, 1991. http://www.gmao.nasa.gov/.
[KS92]R.D. Koster and M.J. Suarez. Modeling the land surface boundary in climate models as a composite of independent vegetation stands. J.~Geophys.~Res., 97:2697–2715, 1992.
[LH74]A.A. Lacis and J.E. Hansen. A parameterization for the absorption of solar radiation in the earth’s atmosphere. J.~Atmos.~Sci., 31:118–133, 1974.
[LDDM97]W.G. Large, G. Danabasoglu, S.C. Doney, and J.C. McWilliams. Sensitivity to surface forcing and boundary layer mixing in a global ocean model: annual-mean climatology. J.~Phys.~Oceanogr., 27(11):2418–2447, 1997.
[LMD94]W.G. Large, J.C. McWilliams, and S.C. Doney. Oceanic vertical mixing: a review and a model with nonlocal boundary layer parameterization. Rev.~Geophys., 32:363–403, 1994.
[LP81]W.G. Large and S. Pond. Open ocean momentum flux measurements in moderate to strong winds. J.~Phys.~Oceanogr., 11:324–336, 1981.
[Lei68]C.E. Leith. Large eddy simulation of complex engineering and geophysical flows. Physics of Fluids, 10:1409–1416, 1968.
[Lei96]C.E. Leith. Stochastic models of chaotic systems. Physica D., 98:481–491, 1996.
[LKT+12]J.-F. Lemieux, D. Knoll, B. Tremblay, D.M. Holland, and M. Losch. A comparison of the Jacobian-free Newton-Krylov method and the EVP model for solving the sea ice momentum equation with a viscous-plastic formulation: a serial algorithm study. J.~Comput.~Phys., 231(17):5926–5944, 2012. doi:10.1016/j.jcp.2012.05.024.
[LTSedlacek+10]J.-F. Lemieux, B. Tremblay, J. Sedláček, P. Tupper, S. Thomas, D. Huard, and J.-P. Auclair. Improving the numerical convergence of viscous-plastic sea ice models with the Jacobian-free Newton-Krylov method. J.~Comput.~Phys., 229:2840–2852, 2010. doi:10.1016/j.jcp.2009.12.011c.
[Lepparanta83]M. Leppäranta. A growth model for black ice, snow ican and snow thickness in subarctic basins. Nordic Hydrology, 14:59–70, 1983.
[LFLV14]M. Losch, A. Fuchs, J.-F. Lemieux, and A. Vanselow. A parallel Jacobian-free Newton-Krylov solver for a coupled sea ice-ocean model. J.~Comput.~Phys., 257(A):901–910, 2014. doi:10.1016/j.jcp.2013.09.026.
[LMC+10]M. Losch, D. Menemenlis, J.-M. Campin, P. Heimbach, and C. Hill. On the formulation of sea-ice models. Part 1: effects of different solver implementations and parameterizations. Ocean Modelling, 33(1–2):129–144, 2010. doi:10.1016/j.ocemod.2009.12.008.
[MGZ+99]J. Marotzke, R. Giering, K.Q. Zhang, D. Stammer, C. Hill, and T. Lee. Construction of the adjoint mit ocean general circulation model and application to atlantic heat transport variability. J.~Geophys.~Res., 104, C12:29,529–29,547, 1999.
[MAC+04]J. Marshall, A. Adcroft, J.-M. Campin, C. Hill, and A. White. Atmosphere-ocean modeling exploiting fluid isomorphisms. Mon.~Wea.~Rev., 132:2882–2894, 2004. URL: http://mitgcm.org/pdfs/a_o_iso.pdf, doi:10.1175/MWR2835.1.
[MAH+97]J. Marshall, A. Adcroft, C. Hill, L. Perelman, and C. Heisey. A finite-volume, incompressible navier stokes model for studies of the ocean on parallel computers. J.~Geophys.~Res., 102(C3):5753–5766, 1997. URL: http://mitgcm.org/pdfs/96JC02776.pdf.
[MHPA97]J. Marshall, C. Hill, L. Perelman, and A. Adcroft. Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J.~Geophys.~Res., 102(C3):5733–5752, 1997. URL: http://mitgcm.org/pdfs/96JC02775.pdf.
[MJH98]J. Marshall, H. Jones, and C. Hill. Efficient ocean modeling using non-hydrostatic algorithms. J.~Mar.~Sys., 18:115–134, 1998. URL: http://mitgcm.org/pdfs/journal_of_marine_systems_1998.pdf, doi:10.1016/S0924-7963%2898%2900008-6.
[MJWF03]T. J. McDougall, D. R. Jackett, D. G. Wright, and R. Feistel. Accurate and computationally efficient algorithms for potential temperature and density of seawater. J.~Atmos.~Ocean.~Technol., 5:730–741, 2003.
[Mol09]A. Molod. Running GCM physics and dynamics on different grids: algorithm and tests. Tellus, 61A:381–393, 2009.
[MS92]S. Moorthi and M.J. Suarez. Relaxed arakawa schubert: a parameterization of moist convection for general circulation models. Mon.~Wea.~Rev., 120:978–1002, 1992.
[Mou96]J.N. Moum. Energy-containing scales of turbulence in the ocean thermocline. J.~Geophys.~Res., 101 (C3):14095–14109, 1996.
[Orl76]I. Orlanski. A simple boundary condition for unbounded hyperbolic flows. J.~Comput.~Phys., 21:251–269, 1976.
[PR97]T. Paluszkiewicz and R.D. Romea. A one-dimensional model for the parameterization of deep convection in the ocean. Dyn.~Atmos.~Oceans, 26:95–130, 1997.
[Pan73]H.A. Panofsky. Tower micrometeorology. In D. A. Haugen, editor, Workshop on Micrometeorology. American Meteorological Society, 1973.
[Pot73]D. Potter. Computational Physics. John Wiley, New York, 1973.
[Red82]M.H. Redi. Oceanic Isopycnal Mixing by Coordinate Rotation. J.~Phys.~Oceanogr., 12(10):1154–1158, oct 1982. doi:10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2.
[Roe85]P.L. Roe. Some contributions to the modelling of discontinuous flows. In B.E. Engquist, S. Osher, and R.C.J. Somerville, editors, Large-Scale Computations in Fluid Mechanics, volume 22 of Lectures in Applied Mathematics, pages 163–193. American Mathematical Society, Providence, RI, 1985.
[RSG87]J.E. Rosenfield, M.R. Schoeberl, and M.A. Geller. A computation of the stratospheric diabatic circulation using an accurate radiative transfer model. J.~Atmos.~Sci., 44:859–876, 1987.
[SG94]H.E. Seim and M.C. Gregg. Detailed observations of a naturally occurring shear instability. J.~Geophys.~Res., 99 (C5):10049–10073, 1994.
[Sem76]A.J. Semtner, Jr. A model for the thermodynamic growth of sea ice in numerical investigations of climate. J.~Phys.~Oceanogr., 6:379–389, 1976.
[Sha70]R. Shapiro. Smoothing, filtering, and boundary effects. Rev.~Geophys.~Space~Phys., 8(2):359–387, 1970.
[Sma63]J. Smagorinsky. General circulation experiments with the primitive equations i: the basic experiment. Mon.~Wea.~Rev., 91(3):99–164, 1963.
[Sma93]J. Smagorinsky. Large eddy simulation of complex engineering and geophysical flows. In B. Galperin and S.A. Orszag, editors, Evolution of Physical Oceanography, pages 3–36. Cambridge University Press, 1993.
[Ste90]D.P. Stevens. On open boundary conditions for three dimensional primitive equation ocean circulation models. Geophys. Astrophys. Fl. Dyn., 51:103–133, 1990.
[Sto48]H. Stommel. The western intensification of wind-driven ocean currents. Trans. Am. Geophys. Union, 29:206, 1948.
[SM88]Y.C. Sud and A. Molod. The roles of dry convection, cloud-radiation feedback processes and the influence of recent improvements in the parameterization of convection in the gla gcm. Mon.~Wea.~Rev., 116:2366–2387, 1988.
[TS96]L.L. Takacs and M.J. Suarez. Dynamical aspects of climate simulations using the geos general circulation model. NASA Technical Memorandum 104606 Volume 10, National Aeronautics and Space Administration, NASA; Goddard Space Flight Center; Greenbelt (MD), 20771; USA, 1996. http://www.gmao.nasa.gov/.
[Tho77]S.A. Thorpe. Turbulence and mixing in a scottish loch. Phil.~Trans.~R.~Soc.~Lond., 286:125–181, 1977.
[VMHS97]M. Visbeck, J. Marshall, T. Haine, and M. Spall. Specification of eddy transfer coefficients in coarse-resolution ocean circulation models. J.~Phys.~Oceanogr., 27(3):381–402, 1997.
[Waj93]R. Wajsowicz. A consistent formulation of the anisotropic stress tensor for use in models of the large-scale ocean circulation. J.~Comput.~Phys., 105(2):333–338, 1993.
[WG94]J.C. Wesson and M.C. Gregg. Mixing at camarinal sill in the strait of gibraltar. Q.~J.~R.~Meteorol.~Soc., 99 (C5):9847–9878, 1994.
[WB95]A.A. White and R.A. Bromley. Dynamically consistent, quasi-hydrostatic equations for global models with a complete representation of the coriolis force. J.~Geophys.~Res., 121:399–418, 1995.
[Wil69]G.P. Williams. Numerical integration of the three-dimensional navier stokes equations for incompressible flow. J.~Fluid Mech., 37:727–750, 1969.
[Win00]M. Winton. A reformulated three-layer sea ice model. J.~Atmos.~Ocean.~Technol., 17:525–531, 2000.
[YK74]A.M. Yaglom and B.A. Kader. Heat and mass transfer between a rough wall and turbulent fluid flow at high reynolds and peclet numbers. J.~Fluid Mech., 62:601–623, 1974.
[Yam77]T. Yamada. A numerical experiment on pollutant dispersion in a horizontally-homogenious atmospheric boundary layer. Atmos. Environ., 11:1015–1024, 1977.
[ZH97]J. Zhang and W.D. Hibler, III. On an efficient numerical method for modeling sea ice dynamics. J.~Geophys.~Res., 102(C4):8691–8702, 1997.
[ZWDHSR98]J. Zhang, III W.D. Hibler, M. Steele, and D.A. Rothrock. Arctic ice-ocean modeling with and without climate restoring. J.~Phys.~Oceanogr., 28:191–217, 1998.
[ZSL95]J. Zhou, Y.C. Sud, and K.-M. Lau. Impact of orographically induced gravity wave drag in the gla gcm. Q.~J.~R.~Meteorol.~Soc., 122:903–927, 1995.