MiTgcm Documentation
Release 1.0

Alistair Adcroft, Jean-Michel Campin, Stephanie Dutkiewicz,
Constantinos Evangelinos, David Ferreira, Mick Follows,

Gael Forget, Baylor Fox-Kemper, Patrick Heimbach, Chris Hill,
Ed Hill, Helen Hill, Oliver Jahn, Martin Losch, John Marshall,
Guillaume Maze, Dimitris Menemenlis and Andrea Molod

Feb 09, 2018

Contents:

1 Overview

2

1.1
1.2

1.3

1.4

1.5

1.6

Introduction e e e
Mlustrations of the model inaction
1.2.1 Global atmosphere: ‘Held-Suarez’ benchmark
1.22 0 0cean @Yres v o v i e e e e e e e e e e e e e e e
1.2.3 Global ocean circulation L
1.2.4 Convection and mixing over topography o it e e
1.2.5 Boundary forced internal waves oL Lo
1.2.6 Parameter sensitivity using the adjoint of MITgem
1.2.7 Global state estimation of theocean
1.2.8 Ocean biogeochemicalcycles. L e
1.2.9 Simulations of laboratory eXperiments v v vttt
Continuous equations in ‘1’ coordinates o u e e e e e e e e
1.3.1 Kinematic Boundary conditions e
1.3.2 Atmosphere e e e e e e
133 Ocean e e e e
1.3.4 Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and Non-hydrostatic forms
1.3.5 Solution Strate@y o vt e e e e e e e e e e e e e e e e e e
1.3.6 Finding the pressure field L
1.3.7 Forcing/dissipation i e e e e e e e e e
1.3.8 Vectorinvariant form L
1.3.9 Adjoint L e e e
Appendix ATMOSPHERE e e e e
1.4.1 Hydrostatic Primitive Equations for the Atmosphere in Pressure Coordinates
Appendix OCEAN o e e
1.5.1 Equations of Motion forthe Ocean
Appendix OPERATORS e
1.6.1 Coordinate SYyStEMS . . . v v v v v v v e

Discretization and Algorithm

2.1
2.2
23
24
25
2.6

Notation
Time-stepping
Pressure method with rigid-lid

Pressure method with implicit linear free-surface 0oL,

Explicit time-stepping: Adams-Bashforth
Implicit time-stepping: backward method

37
37
38
39
41
42
42

2.7 Synchronous time-stepping: variables co-located intime 44
2.8 Staggered baroclinic time-Stepping ot e e e e e e e e e e e 47
2.9 Non-hydrostatic formulation L e e e 50
2.10 Variants on the Free Surface L e 52
2.10.1 Crank-Nicolson barotropic time Stepping« « v v v vttt e 53
2.10.2 Non-linear free-surface L e 54
2.11 Spatial discretization of the dynamical equations 59
2.11.1 The finite volume method: finite volumes versus finite difference 59
2.11.2 Cgrid staggering of variables L e 60
2.11.3 Grid initialization and data oL oL e e e 60
2.11.4 Horizontal grid L. 60
2.11.5 Vertical grido e e e 63
2.11.6 Topography: partially filledcells 64
2.12 Continuity and horizontal pressure gradientterm 65
2.13 Hydrostaticbalance L e 65
2.14 Flux-form momentum equations v vt vttt e e e e e e 66
2.14.1 Advection of MOMENIUM ottt e e e e e e e e 67
2,142 CorioliS termMS v v i i e e e e e e e e e e e e e e e e e 67
2.143 Curvature metric terms v e et e e e e e e e e e e e e e e e 68
2.14.4 Non-hydrostaticmetric terms L 69
2.14.5 Lateral dissipation e e 69
2.14.6 Vertical disSipation e e e e e e e e 71
2.14.7 Derivation of discrete energy Conservation« v v v vt v e e e e e 72
2.14.8 Mom Diagnosticso e e e e e e e e e e e e e 72
2.15 Vector invariant momentum equationso e e e e e e e e 74
2.15.1 Relative VOIticity e e e 75
2.15.2 KinetiC energy ¢ v v v v i e e e e e e e e e e e e e e e 75
2,153 CorioliS terms o i i e e e e e e e e e e e e e 76
2.15.4 Shearterms o i e e e e e e e e e e e e e 76
2.15.5 Gradient of Bernoulli function L o 77
2.15.6 Horizontal divergence e e 77
2.15.7 Horizontal dissipationo e e e 77
2.15.8 Vertical dissipation e e e e e e e e 78
2.16 Tracer eqUAtIONS . . . v v v v v e i e 78
2.16.1 Time-stepping of tracers: ABIT 78
2.17 Linear advection SChemes o o i e e e e e e e e 80
2.17.1 Centered second order advection-diffusion L. 80
2.17.2 Third order upwind bias advection oL 81
2.17.3 Centered fourth order advection e 82
2.17.4 Firstorder upwind advectiono o e e e e e e e 82
2.18 Non-linear advection schemes o o L e e e e e e e e 83
2.18.1 Second order flux limiters L e 83
2.18.2 Third order direct space time e e e e 84
2.18.3 Third order direct space time with flux limiting 85
2.18.4 Multi-dimensional advection L. L 86
2.19 Comparison of advectionschemes Lo e 86
220 ShapiroFilter e 94
2.20.1 SHAPDIagnostiCs o o v ittt e e e e e e e e e 94
2.21 Nonlinear Viscosities for Large Eddy Simulation 95
221.1 Eddy VISCOSILY . . v v v v v e 95
2.21.2 Mercator, Nondimensional Equations 100
Getting Started with MITgem 103
3.1 Whereto find information L 103

3.2

33
34
35

3.6

3.7

4.1

4.2

5.1
52

53

54

Obtaining thecode L e e e
321 Method 1
322 Method2 e
Updatingthecode e
Model and directory Structure L e e e e e e e e e
Buildingthecode L
3.5.1 Building/compiling the code elsewhere
352 Usinggenmake?2 i e e e e e e e e e e e e
353 Buildingwith MPI 0. oL
Running the model o . . e e
3.6.1 Runningwith MPI e
3.6.2 Outputfiles e e
3.6.3 Lookingattheoutput e e e e e
Customizing the model configuration Lo
3.7.1 Parameters: Computational Domain, Geometry and Time-Discretization
3.7.2 Parameters: Equationof State
3.7.3 Parameters: Momentum Equations L oo
3.7.4 Parameters: Tracer Equations e e e
3.7.5 Parameters: Simulation Controls L
3.7.6 Parameters: Default Values
4 MITgcem Tutorial Example Experiments
Barotropic Gyre MITgecm Example 0 e
4.1.1 Equations Solved L e e e
4.1.2 Discrete Numerical Configuration i
4.1.3 Code Configuration ottt e e e e e
A Rotating Tank in Cylindrical Coordinates
42.1 Equations Solved L e e e e
4.2.2 Discrete Numerical Configuration
423 Code Configurationt e e e
5 Contributing to the MITgcm
Bugs and feature requests L. oL e
Using Gitand Github e
521 Quickstart Guide
5.2.2 Detailed guide for those less familiar with Gitand GitHub
Coding style guide o e e e e e e e e e
5.3.1 Automatic testing with Travis-CL o o o
Contributing tothe manual L e
54.1 Sectionheadings
542 Internal documentreferences o L Lo
543 Otherembeddedlinks
544 Symbolic Notation e
545 Figures e e e e e e
54.6 Tables e e
547 Othertextblocks
5.4.8 Otherstyle cONVENtions o v v v v v it e e e e e e e e e e e e e e
549 Buildingthe manual e e e
Reviewing pull requests L e

5.5

6 Software Architecture

7 Automatic Differentiation

8 Packages I - Physical Parameterizations

123
123
124
124
125
130
130
130
130

137
137
137
138
138
144
144
144
144
144
145
145
145
146
147
147
148
148

151

153

155

1 OVEIVIEW . . . o o oo e 155
8.1.1 Using MITgem Packages 0 it e e e 155

8.2 Packages Related to Hydrodynamical Kernel 160
8.2.1 Generic Advection/Diffusion oL 160

8.2.2 Shapiro Filter e 161

823 FFTFilteringCode e 162

8.2.4 exch2: Extended Cubed Sphere Topology 162

8.2.5 Gridalt - Alternate Grid Package e 169

8.3 General purpose numerical infrastructure packages oL 173
8.3.1 OBCS: Open boundary conditions for regional modeling 173

832 RBCSPackage e 180

833 PTRACERS Package st e e 182

8.4 Ocean Packages e e e e e 185
8.4.1 GMREDI: Gent-McWilliams/Redi SGS Eddy Parameterization 185

8.4.2 KPP: Nonlocal K-Profile Parameterization for Vertical Mixing 192

8.43 GGLI90: a TKE vertical mixing scheme 198

8.4.4 OPPS: Ocean Penetrative Plume Scheme 198

8.4.5 KLI10: Vertical Mixing Due to Breaking Internal Waves 198

8.4.6 BULK_FORCE: Bulk Formula Package 201

8.47 EXF: The external forcing package 205

8.4.8 CAL:Thecalendar package 213

8.5 Atmosphere Packages L 217
8.5.1 Atmospheric Intermediate Physics: AIM e 217

8.5.2 Landpackage e e e 219

8.5.3 Fizhi: High-end Atmospheric Physics 0 . 220

8.6 SealcePackages e 258
8.6.1 THSICE: The Thermodynamic Sea Ice Package 258

8.6.2 SEAICEPackage e 263

9 Packages II - Diagnostics and I/O 279
10 Ocean State Estimation Packages 281
10.1 ECCO: model-data comparisons using gridded datasets 281
10.1.1 Generic Cost Function e 282

10.1.2 Generic Integral Function e 285

10.1.3 Custom CostFunctions e 285

10.1.4 KeyRoutines e e e e e e e e e 286

10.1.5 Compile Options o vt it e e e e e e e e e e e e e e e 286

10.2 PROFILES: model-data comparisons at observed locations 286
10.3 CTRL: Model Parameter Adjustment Capability 288
10.4 SMOOTH: Smoothing And Covariance Model 290
10.5 The line search optimisation algorithm L. .. 290
10.5.1 General features L e e e e e 290

10.5.2 Theonline vs. offline version L e 290

10.5.3 Number of iterations vs. number of simulations 291

11 Under Development 297
12 Previous Applications of MITgem 299
Bibliography 301

CHAPTER 1

Overview

This document provides the reader with the information necessary to carry out numerical experiments using MITgcm.
It gives a comprehensive description of the continuous equations on which the model is based, the numerical algorithms
the model employs and a description of the associated program code. Along with the hydrodynamical kernel, physical
and biogeochemical parameterizations of key atmospheric and oceanic processes are available. A number of examples
illustrating the use of the model in both process and general circulation studies of the atmosphere and ocean are also
presented.

1.1 Introduction

MITgcm has a number of novel aspects:

* it can be used to study both atmospheric and oceanic phenomena; one hydrodynamical kernel is
used to drive forward both atmospheric and oceanic models - see Figure 1.1

* it has a non-hydrostatic capability and so can be used to study both small-scale and large scale
processes - see Figure 1.2

* finite volume techniques are employed yielding an intuitive discretization and support for the treat-
ment of irregular geometries using orthogonal curvilinear grids and shaved cells - see Figure 1.3

e tangent linear and adjoint counterparts are automatically maintained along with the forward model,
permitting sensitivity and optimization studies.

* the model is developed to perform efficiently on a wide variety of computational platforms.

Key publications reporting on and charting the development of the model are Hill and Marshall (1995), Marshall et al.
(1997a), Marshall et al. (1997b), Adcroft and Marshall (1997), Marshall et al. (1998), Adcroft and Marshall (1999),
Hill et al. (1999), Marotzke et al. (1999), Adcroft and Campin (2004), Adcroft et al. (2004b), Marshall et al. (2004)
(an overview on the model formulation can also be found in Adcroft et al. (2004c¢)):

MITgcm Documentation, Release 1.0

Dynamical Kernel

Atmospheric
Physics

Ocean
Physics

Figure 1.1: MITgcm has a single dynamical kernel that can drive forward either oceanic or atmospheric simulations.

~1 000km ~10 000 km

r
~100 km

~100 m

Figure 1.2: MITgcm has non-hydrostatic capabilities, allowing the model to address a wide range of phenomenon -
from convection on the left, all the way through to global circulation patterns on the right.

2 Chapter 1. Overview

MITgcm Documentation, Release 1.0

Finite Volume: Shaved Cells

Stream Function W Tracer 0 at t=0.3

=1
- 1 -1 1

Figure 1.3: Finite volume techniques (bottom panel) are used, permitting a treatment of topography that rivals o
(terrain following) coordinates.

1.1. Introduction 3

MITgcm Documentation, Release 1.0

Hill, C. and J. Marshall, (1995) Application of a Parallel Navier-Stokes Model to Ocean Circulation in Parallel Com-
putational Fluid Dynamics, In Proceedings of Parallel Computational Fluid Dynamics: Implementations and Results
Using Parallel Computers, 545-552. Elsevier Science B.V.: New York [HM95]

Marshall, J., C. Hill, L. Perelman, and A. Adcroft, (1997a) Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean
modeling, J. Geophysical Res., 102(C3), 5733-5752 [MHPA97]

Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, (1997b) A finite-volume, incompressible Navier Stokes
model for studies of the ocean on parallel computers, J. Geophysical Res., 102(C3), 5753-5766 [MAH+97]

Adcroft, A.J., Hill, C.N. and J. Marshall, (1997) Representation of topography by shaved cells in a height coordinate
ocean model, Mon Wea Rev, 125, 2293-2315 [AHM97]

Marshall, J., Jones, H. and C. Hill, (1998) Efficient ocean modeling using non-hydrostatic algorithms, Journal of
Marine Systems, 18, 115-134 [MJH98]

Adcroft, A., Hill C. and J. Marshall: (1999) A new treatment of the Coriolis terms in C-grid models at both high and
low resolutions, Mon. Wea. Rev., 127, 1928-1936 [AHM99]

Hill, C, Adcroft,A., Jamous,D., and J. Marshall, (1999) A Strategy for Terascale Climate Modeling, In Proceedings of
the Eighth ECMWF Workshop on the Use of Parallel Processors in Meteorology, 406-425 World Scientific Publishing
Co: UK [HATM99]

Marotzke, J, Giering,R., Zhang, K.Q., Stammer,D., Hill,C., and T.Lee, (1999) Construction of the adjoint MIT ocean
general circulation model and application to Atlantic heat transport variability, J. Geophysical Res., 104(C12), 29,529-
29,547 [MGZ+99]

A. Adcroft and J.-M. Campin, (2004a) Re-scaled height coordinates for accurate representation of free-surface flows
in ocean circulation models, Ocean Modelling, 7, 269-284 [AC04]

A. Adcroft, J.-M. Campin, C. Hill, and J. Marshall, (2004b) Implementation of an atmosphere-ocean general circula-
tion model on the expanded spherical cube, Mon Wea Rev , 132, 2845-2863 [ACHMO04]

J. Marshall, A. Adcroft, J.-M. Campin, C. Hill, and A. White, (2004) Atmosphere-ocean modeling exploiting fluid
isomorphisms, Mon. Wea. Rev., 132, 2882-2894 [MAC+04]

A. Adcroft, C. Hill, J.-M. Campin, J. Marshall, and P. Heimbach, (2004c) Overview of the formulation and numerics
of the MITgcm, In Proceedings of the ECMWF seminar series on Numerical Methods, Recent developments in numer-
ical methods for atmosphere and ocean modelling, 139-149. URL: http://mitgcm.org/pdfs/ECMWF2004- Adcroft.pdf
[AHCampin+04]

We begin by briefly showing some of the results of the model in action to give a feel for the wide range of problems
that can be addressed using it.

1.2 lllustrations of the model in action

MITgcm has been designed and used to model a wide range of phenomena, from convection on the scale of meters in
the ocean to the global pattern of atmospheric winds - see Figure 1.2. To give a flavor of the kinds of problems the
model has been used to study, we briefly describe some of them here. A more detailed description of the underlying
formulation, numerical algorithm and implementation that lie behind these calculations is given later. Indeed many
of the illustrative examples shown below can be easily reproduced: simply download the model (the minimum you
need is a PC running Linux, together with a FORTRAN77 compiler) and follow the examples described in detail in
the documentation.

4 Chapter 1. Overview

http://mitgcm.org/pdfs/ECMWF2004-Adcroft.pdf

MITgcm Documentation, Release 1.0

1.2.1 Global atmosphere: ‘Held-Suarez’ benchmark

A novel feature of MITgcm is its ability to simulate, using one basic algorithm, both atmospheric and oceanographic
flows at both small and large scales.

Figure 1.4 shows an instantaneous plot of the 500 mb temperature field obtained using the atmospheric isomorph of
MITgcm run at 2.8° resolution on the cubed sphere. We see cold air over the pole (blue) and warm air along an
equatorial band (red). Fully developed baroclinic eddies spawned in the northern hemisphere storm track are evident.
There are no mountains or land-sea contrast in this calculation, but you can easily put them in. The model is driven
by relaxation to a radiative-convective equilibrium profile, following the description set out in Held and Suarez (1994)
[HS94] designed to test atmospheric hydrodynamical cores - there are no mountains or land-sea contrast.

Figure 1.4: Instantaneous plot of the temperature field at 500 mb obtained using the atmospheric isomorph of MITgcm

As described in Adcroft et al. (2004) JACHMO04], a ‘cubed sphere’ is used to discretize the globe permitting a uniform
griding and obviated the need to Fourier filter. The ‘vector-invariant’ form of MITgcm supports any orthogonal
curvilinear grid, of which the cubed sphere is just one of many choices.

Figure 1.5 shows the 5-year mean, zonally averaged zonal wind from a 20-level configuration of the model. It compares
favorable with more conventional spatial discretization approaches. The two plots show the field calculated using
the cube-sphere grid and the flow calculated using a regular, spherical polar latitude-longitude grid. Both grids are
supported within the model.

1.2.2 Ocean gyres

Baroclinic instability is a ubiquitous process in the ocean, as well as the atmosphere. Ocean eddies play an important
role in modifying the hydrographic structure and current systems of the oceans. Coarse resolution models of the
oceans cannot resolve the eddy field and yield rather broad, diffusive patterns of ocean currents. But if the resolution
of our models is increased until the baroclinic instability process is resolved, numerical solutions of a different and
much more realistic kind, can be obtained.

1.2. lllustrations of the model in action 5

MITgcm Documentation, Release 1.0

=200 —

—400 —

Z (MB)
|

=600 —

—800 —

—1000 T

-

—200 —

—400 —

Z (MB)
|

—600 —

—800 —

—1000 T
80°5 ° 0°
LATITUDE

Figure 1.5: Five year mean, zonally averaged zonal flow for cube-sphere simulation (top) and latitude-longitude
simulation (bottom) and using Held-Suarez forcing. Note the difference in the solutions over the pole — the cubed
sphere is superior.

6 Chapter 1. Overview

MITgcm Documentation, Release 1.0

Figure 1.6 shows the surface temperature and velocity field obtained from MITgcm run at %O horizontal resolution
on a lat-lon grid in which the pole has been rotated by 90° on to the equator (to avoid the converging of meridian in
northern latitudes). 21 vertical levels are used in the vertical with a ‘lopped cell’ representation of topography. The
development and propagation of anomalously warm and cold eddies can be clearly seen in the Gulf Stream region.
The transport of warm water northward by the mean flow of the Gulf Stream is also clearly visible.

32

?i—\fv—\f
T— 30
Ex
28
B

60 —
26
— 24
— 22
40 — L og
— 18

. _
< 16
50 | 14
12
] 10
8

O —]
6
N 4
2

—-120

LON

Figure 1.6: Instantaneous temperature map from a L9 simulation of the North Atlantic. The figure shows the temper-

6
ature in the second layer (37.5 m deep).

1.2.3 Global ocean circulation

Figure 1.7 shows the pattern of ocean currents at the surface of a 4° global ocean model run with 15 vertical levels.
Lopped cells are used to represent topography on a regular lat-lon grid extending from 70°N to 70°S. The model is
driven using monthly-mean winds with mixed boundary conditions on temperature and salinity at the surface. The
transfer properties of ocean eddies, convection and mixing is parameterized in this model.

1.2. lllustrations of the model in action 7

MITgcm Documentation, Release 1.0

Currents at 25 m, t=1000 years
| | | | |

90N ! | | | | |
0.5 m/s
60N -
(SRR
DhIINNII I
AN,
SN SSN
30N ey \
1 f (l IR N R
i
= Q\\"QQQ"C;S:“”“Q\‘Q\‘Q
NS
SN
N PSR -D,»\\\\\\\‘:\“\W
SIS LA B /RN
° = PN
HASFEENEL e
RS TN e
o S22 EEn
30S -
e AP PPt oot P33 08 P P tmeecmecm e oo e oo
908 I ' ! T T T T T T T T

180W 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E 180E

Figure 1.7: Pattern of surface ocean currents from a global integration of the model at 4° horizontal resolution and
with 15 vertical levels.

8 Chapter 1. Overview

MITgcm Documentation, Release 1.0

Figure 1.8 shows the meridional overturning circulation of the global ocean in Sverdrups.

0
~1000 1
£ -2000 | 10
p 0
® _3000 |
(]

-4000

-5000

80 60 -40 20 0 20 4D 80 80
Latitude

Figure 1.8: Meridional overturning stream function (in Sverdrups) from a global integration of the model at 4° hori-
zontal resolution and with 15 vertical levels.

1.2.4 Convection and mixing over topography

Dense plumes generated by localized cooling on the continental shelf of the ocean may be influenced by rotation when
the deformation radius is smaller than the width of the cooling region. Rather than gravity plumes, the mechanism for
moving dense fluid down the shelf is then through geostrophic eddies. The simulation shown in Figure 1.9 (blue is
cold dense fluid, red is warmer, lighter fluid) employs the non-hydrostatic capability of MITgcm to trigger convection
by surface cooling. The cold, dense water falls down the slope but is deflected along the slope by rotation. It is found
that entrainment in the vertical plane is reduced when rotational control is strong, and replaced by lateral entrainment
due to the baroclinic instability of the along-slope current.

1.2.5 Boundary forced internal waves

The unique ability of MITgcm to treat non-hydrostatic dynamics in the presence of complex geometry makes it an ideal
tool to study internal wave dynamics and mixing in oceanic canyons and ridges driven by large amplitude barotropic
tidal currents imposed through open boundary conditions.

Figure 1.10 shows the influence of cross-slope topographic variations on internal wave breaking - the cross-slope
velocity is in color, the density contoured. The internal waves are excited by application of open boundary conditions
on the left. They propagate to the sloping boundary (represented using MITgcm’s finite volume spatial discretization)
where they break under non-hydrostatic dynamics.

1.2. lllustrations of the model in action 9

MITgcm Documentation, Release 1.0

0

-20

-40
10.98

-60
-80 10.97

E

100 10.958

-120
40.95

-140

-160

-180

3
x (km)

Figure 1.9: MITgcm run in a non-hydrostatic configuration to study convection over a slope.

0.04
_20 0.03
—40
0.02
-60
0.01
-80
E_100 0
N
-120 ~0.01
—-140 003
-160
-0.03
-180
-0.04

2000 2500 3000 3500 4000 4500
x (m)

Figure 1.10: Simulation of internal waves forced at an open boundary (on the left) impacting a sloping shelf. The
along slope velocity is shown colored, contour lines show density surfaces. The slope is represented with high-fidelity
using lopped cells.

10 Chapter 1. Overview

MITgcm Documentation, Release 1.0

1.2.6 Parameter sensitivity using the adjoint of MITgcm

Forward and tangent linear counterparts of MITgcm are supported using an ‘automatic adjoint compiler’. These can
be used in parameter sensitivity and data assimilation studies.

As one example of application of the MITgcem adjoint, Figure 1.11 maps the gradient g—;{[where J is the magnitude

of the overturning stream-function shown in Figure 1.8 at 60°N and H (), ¢) is the mean, local air-sea heat flux over a
100 year period. We see that .J is sensitive to heat fluxes over the Labrador Sea, one of the important sources of deep
water for the thermohaline circulations. This calculation also yields sensitivities to all other model parameters.

Sensitivity of the Meridional Overturning — Ocean

Heat Flux (Min= -7.7 107 Sv W' m?; Max = 42.9 107 Sv W' m?
| | | | | | | | |

90N

60N —

30N

30S

60S -

90S \ \ \ \ \ \ \ \ \ \ \
180W 150W 120W 90W 60W 30W, 0, ,30E 60E 90E 120E 150E 180E
10 "SvW 'm

-10 -5 0 5 10 15 20 25 30 35 40 45 50

Figure 1.11: Sensitivity of meridional overturning strength to surface heat flux changes. Contours show the magnitude
of the response (in Sv x 10) that a persistent +1 Wm heat flux anomaly at a given grid point would produce.

1.2.7 Global state estimation of the ocean

An important application of MITgcm is in state estimation of the global ocean circulation. An appropriately defined
‘cost function’, which measures the departure of the model from observations (both remotely sensed and in-situ)
over an interval of time, is minimized by adjusting ‘control parameters’ such as air-sea fluxes, the wind field, the
initial conditions etc. Figure 1.12 and Figure 1.13 show the large scale planetary circulation and a Hopf-Muller plot of
Equatorial sea-surface height. Both are obtained from assimilation bringing the model in to consistency with altimetric
and in-situ observations over the period 1992-1997.

1.2. lllustrations of the model in action 11

MITgcm Documentation, Release 1.0

Figure 1.12: Circulation patterns from a multi-year, global circulation simulation constrained by Topex altimeter data
and WOCE cruise observations. This output is from a higher resolution, shorter duration experiment with equatorially
enhanced grid spacing.

12 Chapter 1. Overview

MITgcm Documentation, Release 1.0

(a) Simulation (b) Assimilation (c) Observation (T/P) cm
30
700 | H'l' ‘
4 l
|
600 1 ‘l 20
500 .
~
(=23
S
= 400
c | 0
Qo
=300
a
-10
200
I -20
100
0 . :[i L , 30
50 100 150 200 250 50 100 150 200 250 50 100 150 200 250
Longitude Longitude Longitude

Figure 1.13: Equatorial sea-surface height in unconstrained (left), constrained (middle) simulations and in observations
(right).

1.2. lllustrations of the model in action 13

MITgcm Documentation, Release 1.0

1.2.8 Ocean biogeochemical cycles

MITgcem is being used to study global biogeochemical cycles in the ocean. For example one can study the effects of
interannual changes in meteorological forcing and upper ocean circulation on the fluxes of carbon dioxide and oxygen
between the ocean and atmosphere. Figure 1.14 shows the annual air-sea flux of oxygen and its relation to density
outcrops in the southern oceans from a single year of a global, interannually varying simulation. The simulation is run

at 1°x1° resolution telescoping to %O X %O in the tropics (not shown).

MITgcm air-sea 02 flux (mol/mz/yrg with contoured potential density
0

Figure 1.14: Annual air-sea flux of oxygen (shaded) plotted along with potential density outcrops of the surface of the
southern ocean from a global 1°x1° integration with a telescoping grid (to %o) at the equator.

1.2.9 Simulations of laboratory experiments

Figure 1.16 shows MITgcm being used to simulate a laboratory experiment (Figure 1.15) inquiring into the dynamics
of the Antarctic Circumpolar Current (ACC). An initially homogeneous tank of water (1 m in diameter) is driven from
its free surface by a rotating heated disk. The combined action of mechanical and thermal forcing creates a lens of
fluid which becomes baroclinically unstable. The stratification and depth of penetration of the lens is arrested by its
instability in a process analogous to that which sets the stratification of the ACC.

14 Chapter 1. Overview

MITgcm Documentation, Release 1.0

-

Figure 1.15: A 1 m diameter laboratory experiment simulating the dynamics of the Antarctic Circumpolar Current.

1.3 Continuous equations in ‘r’ coordinates

To render atmosphere and ocean models from one dynamical core we exploit ‘isomorphisms’ between equation sets
that govern the evolution of the respective fluids - see Figure 1.17. One system of hydrodynamical equations is written
down and encoded. The model variables have different interpretations depending on whether the atmosphere or ocean
is being studied. Thus, for example, the vertical coordinate ‘r’ is interpreted as pressure, p, if we are modeling the
atmosphere (right hand side of Figure 1.17) and height, z, if we are modeling the ocean (left hand side of Figure 1.17).

The state of the fluid at any time is characterized by the distribution of velocity Vv, active tracers 6 and S, a ‘geopoten-
tial’ ¢ and density p = p(6, S, p) which may depend on 6, S, and p. The equations that govern the evolution of these
fields, obtained by applying the laws of classical mechanics and thermodynamics to a Boussinesq, Navier-Stokes fluid
are, written in terms of a generic vertical coordinate, r, so that the appropriate kinematic boundary conditions can be
applied isomorphically see Figure 1.18.

lz)vzl + (2@ X V‘)h + V¢ = Fy;, horizontal momentum 1.1)
% +%- (2(_2 X G) + % + b = F; vertical momentum (1.2)
Vi -V + % = (continuity (1.3)
b =b(0, S,r) equation of state (1.4

1.3. Continuous equations in ‘r’ coordinates 15

MITgcm Documentation, Release 1.0

100

90

80

70

60

50

40

30

20

10 20 30 40 50 60 70 80 90 100

Figure 1.16: A numerical simulation of the laboratory experiment using MITgcm.

z-p Isomorphism

Ocean (z coordinates) Zesp Atmosphere (p coordinates)
dv+fxv+VP=F P @ dv+fxy+V ®=F
gp+d,P=0 pea a+d, =0
Viv+dw=0 W& @ V,¥y+d,0=0
de=0] doe=0
ds=S§ s q dg==5
I+ V-m+Hy=P-E n+Hep, 9,p+ Vopy =0
~ ©=0 p=0
o))
|»
- |
*.0 P=ps(x.t)

Figure 1.17: Isomorphic equation sets used for atmosphere (right) and ocean (left).

16 Chapter 1. Overview

MITgcm Documentation, Release 1.0

z-p Isomorphism

w=0\‘

p= 0 mb

p= 150 mb

P w4 p= 350 mb
p= 650mb

p= 900 mb

p = 1000 mb

om

-50m

= -100 m

z -175m
-275m

-400 m

Figure 1.18: Vertical coordinates and kinematic boundary conditions for atmosphere (top) and ocean (bottom).

Do

Dt = Qp potential temperature (1.5)
DS
D= Qg humidity/salinity (1.6)

Here:

r is the vertical coordinate

D 0
Dt ot + v - V is the total derivative
~0 .
V=V,+ ka— is the ‘grad’ operator
r

with V, operating in the horizontal and %% operating in the vertical, where % is a unit vector in the vertical
t is time
v = (u,v,7) = (V¥p,7) is the velocity
¢ is the ‘pressure’/‘geopotential’
() is the Earth’s rotation
b is the ‘buoyancy’
6 is potential temperature

S is specific humidity in the atmosphere; salinity in the ocean

1.3. Continuous equations in ‘r’ coordinates 17

MITgcm Documentation, Release 1.0

Fy are forcing and dissipation of ¥
Qp are forcing and dissipation of 0
Qg are forcing and dissipation of .S

The F's and Q’s are provided by ‘physics’ and forcing packages for atmosphere and ocean. These are described in
later chapters.

1.3.1 Kinematic Boundary conditions
1.3.1.1 Vertical

at fixed and moving r surfaces we set (see Figure 1.18):

7 =0atr = Rfizeq(, y) (ocean bottom, top of the atmosphere) 1.7
. Dr
P= o at 7 = Ryoving(2,y) (ocean surface, bottom of the atmosphere) (1.8)

Here
Rmoving = Ro +n

where R, (xz,y) is the ‘r—value’ (height or pressure, depending on whether we are in the atmosphere or ocean) of the
‘moving surface’ in the resting fluid and 7 is the departure from R, (z,y) in the presence of motion.

1.3.1.2 Horizontal

v-n=0 (1.9)
where 1 is the normal to a solid boundary.
1.3.2 Atmosphere
In the atmosphere, (see Figure 1.18), we interpret:
r = pis the pressure (1.10)
._Dp . : o :
T=pp Swis the vertical velocity in p coordinates (L.11)
¢ = g z is the geopotential height (1.12)
oIl
b = —0 is the buoyancy (1.13)
dp

18 Chapter 1. Overview

MITgcm Documentation, Release 1.0

0= T(&)” is potential temperature (1.14)
p

S = q is the specific humidity (1.15)
where

T is absolute temperature

p is the pressure

z is the height of the pressure surface

g is the acceleration due to gravity

In the above the ideal gas law, p = pRT, has been expressed in terms of the Exner function II(p) given by (1.16) (see
also Section 1.4.1)

I(p) = cp(2)" (1.16)

where p. is a reference pressure and © = R/c, with R the gas constant and ¢, the specific heat of air at constant
pressure.

At the top of the atmosphere (which is ‘fixed’ in our 7 coordinate):
Ryized = Ptop = 0
In a resting atmosphere the elevation of the mountains at the bottom is given by
Rinoving = Ro(@,y) = po(,y)

i.e. the (hydrostatic) pressure at the top of the mountains in a resting atmosphere.
The boundary conditions at top and bottom are given by:

w = 0atr = Ryjzeq (top of the atmosphere) (1.17)

Dp
Dt

w= at 7 = Rypoving (bottom of the atmosphere) (1.18)

Then the (hydrostatic form of) equations (1.1)-(1.6) yields a consistent set of atmospheric equations which, for conve-
nience, are written out in p—coordinates in Section 1.4.1 - see eqs. (1.59)-(1.63).

1.3.3 Ocean

In the ocean we interpret:

r = z is the height (1.19)

1.3. Continuous equations in ‘r’ coordinates 19

MITgcm Documentation, Release 1.0

' = = = s the vertical velocit
7 = — = w is the vertical veloci
Dt Y
_r.
¢ = — is the pressure

(&

b(0,S,r) = pi (p(8,S,7) — pc) is the buoyancy

where p, is a fixed reference density of water and g is the acceleration due to gravity.

In the above:

At the bottom of the ocean: Ryizeq(z,y) = —H(z,y).

The surface of the ocean is given by: Ryoving = 1

The position of the resting free surface of the ocean is given by R, = Z, = 0.

Boundary conditions are:

w = 0atr = Ryjzeq (0cean bottom)

D
w = FZ at 7 = Rioving = 1 (ocean surface)

where 7 is the elevation of the free surface.

(1.20)

(1.21)

(1.22)

(1.23)

(1.24)

Then equations (1.1)- (1.6) yield a consistent set of oceanic equations which, for convenience, are written out in

z—coordinates in Section 1.5.1 - see eqs. (1.98) to (1.103).

1.3.4 Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and Non-hydrostatic

forms

Let us separate ¢ in to surface, hydrostatic and non-hydrostatic terms:

¢(9€7ya7") = ¢s(‘r7 y) + (bhyd(mvyar) + ¢nh(x7yar)

and write (1.1) in the form:

ovy, =
87: + vh(bs + vh(bhyd + 6nhvh(Z)nh — foh,
a(ybhyd o
or
or Opnn
ot + or Gr

(1.25)

(1.26)

(1.27)

(1.28)

20

Chapter 1. Overview

MITgcm Documentation, Release 1.0

Here €, is a non-hydrostatic parameter.

The (ég, GT-) in (1.26) and (1.28) represent advective, metric and Coriolis terms in the momentum equations. In
spherical coordinates they take the form' - see Marshall et al. (1997a) [MHPA97] for a full discussion:

G,=—-Vv.Vu advection
{ ur uvtane } .
—S— metric
r r (1.29)
— {—2Qusin ¢ + 2Q7 cos p } Coriolis
+ Fu forcing/dissipation
G, =—-vV.Vv advection
; 2
_Jur_witang metric
T T (1.30)
—{—2Qusin ¢} Coriolis
+Fy forcing/dissipation
G, =—Vv.Vr advection
(=) e
— metric
_r (1.31)
+ 2Qu cos ¢ Coriolis
+ Fr forcing/dissipation

In the above ‘r’ is the distance from the center of the earth and ‘p ’ is latitude (see Figure 1.20).

Grad and div operators in spherical coordinates are defined in Coordinate systems.

1.3.4.1 Shallow atmosphere approximation

Most models are based on the ‘hydrostatic primitive equations’ (HPE’s) in which the vertical momentum equation is
reduced to a statement of hydrostatic balance and the ‘traditional approximation’ is made in which the Coriolis force
is treated approximately and the shallow atmosphere approximation is made. MITgcm need not make the ‘traditional
approximation’. To be able to support consistent non-hydrostatic forms the shallow atmosphere approximation can be
relaxed - when dividing through by r in, for example, (1.29), we do not replace r by a, the radius of the earth.

1.3.4.2 Hydrostatic and quasi-hydrostatic forms

These are discussed at length in Marshall et al. (1997a) [MHPA97].

In the ‘hydrostatic primitive equations’ (HPE) all the underlined terms in Eqs. (1.29) — (1.31) are neglected and ‘r’
is replaced by ‘a’, the mean radius of the earth. Once the pressure is found at one level - e.g. by inverting a 2-d Elliptic
equation for ¢, at 7 = Rp,ouing - the pressure can be computed at all other levels by integration of the hydrostatic
relation, eq (1.27).

In the ‘quasi-hydrostatic’ equations (QH) strict balance between gravity and vertical pressure gradients is not imposed.
The 2Qu cos ¢ Coriolis term are not neglected and are balanced by a non-hydrostatic contribution to the pressure field:

!'In the hydrostatic primitive equations (HPE) all underlined terms in (1.29), (1.30) and (1.31) are omitted; the singly-underlined terms are
included in the quasi-hydrostatic model (QH). The fully non-hydrostatic model (NH) includes all terms.

1.3. Continuous equations in ‘r’ coordinates 21

MITgcm Documentation, Release 1.0

only the terms underlined twice in Egs. (1.29) — (1.31) are set to zero and, simultaneously, the shallow atmosphere
approximation is relaxed. In QH all the metric terms are retained and the full variation of the radial position of a
particle monitored. The QH vertical momentum equation (1.28) becomes:

a(;snh
or

= 2Qu cos

making a small correction to the hydrostatic pressure.

QH has good energetic credentials - they are the same as for HPE. Importantly, however, it has the same angular
momentum principle as the full non-hydrostatic model (NH) - see Marshall et.al. (1997a) [MHPA97]. As in HPE
only a 2-d elliptic problem need be solved.

1.3.4.3 Non-hydrostatic and quasi-nonhydrostatic forms

MITgem presently supports a full non-hydrostatic ocean isomorph, but only a quasi-non-hydrostatic atmospheric
isomorph.

Non-hydrostatic Ocean

In the non-hydrostatic ocean model all terms in equations Eqs. (1.29) — (1.31) are retained. A three dimensional
elliptic equation must be solved subject to Neumann boundary conditions (see below). It is important to note that
use of the full NH does not admit any new ‘fast’ waves in to the system - the incompressible condition (1.3) has
already filtered out acoustic modes. It does, however, ensure that the gravity waves are treated accurately with an
exact dispersion relation. The NH set has a complete angular momentum principle and consistent energetics - see
White and Bromley (1995) [WB95]; Marshall et al. (1997a) [MHPA97].

Quasi-nonhydrostatic Atmosphere

In the non-hydrostatic version of our atmospheric model we approximate 7 in the vertical momentum eqs. (1.28) and
(1.30) (but only here) by:

. Dp 1Dé¢
popp_1D¢

= == 1.32
Dt g Dt (1.32)

where py,,, is the hydrostatic pressure.
1.3.4.4 Summary of equation sets supported by model
Atmosphere

Hydrostatic, and quasi-hydrostatic and quasi non-hydrostatic forms of the compressible non-Boussinesq equations in
p—coordinates are supported.

Hydrostatic and quasi-hydrostatic

The hydrostatic set is written out in p—coordinates in Hydrostatic Primitive Equations for the Atmosphere in Pressure
Coordinates - see eqs. (1.59) to (1.63).

22 Chapter 1. Overview

MITgcm Documentation, Release 1.0

Quasi-nonhydrostatic

A quasi-nonhydrostatic form is also supported.

Ocean
Hydrostatic and quasi-hydrostatic

Hydrostatic, and quasi-hydrostatic forms of the incompressible Boussinesq equations in z—coordinates are supported.

Non-hydrostatic

Non-hydrostatic forms of the incompressible Boussinesq equations in z— coordinates are supported - see eqs. (1.98)
to (1.103).

1.3.5 Solution strategy

The method of solution employed in the HPE, QH and NH models is summarized in Figure 1.19. Under all dy-
namics, a 2-d elliptic equation is first solved to find the surface pressure and the hydrostatic pressure at any level
computed from the weight of fluid above. Under HPE and QH dynamics, the horizontal momentum equations are
then stepped forward and 7 found from continuity. Under NH dynamics a 3-d elliptic equation must be solved for the
non-hydrostatic pressure before stepping forward the horizontal momentum equations; 7 is found by stepping forward
the vertical momentum equation.

There is no penalty in implementing QH over HPE except, of course, some complication that goes with the inclusion
of cos¢ Coriolis terms and the relaxation of the shallow atmosphere approximation. But this leads to negligible
increase in computation. In NH, in contrast, one additional elliptic equation - a three-dimensional one - must be
inverted for p,,;,. However the ‘overhead’ of the NH model is essentially negligible in the hydrostatic limit (see detailed
discussion in Marshall et al. (1997) [MHPA97] resulting in a non-hydrostatic algorithm that, in the hydrostatic limit,
is as computationally economic as the HPEs.

1.3.6 Finding the pressure field
Unlike the prognostic variables u, v, w, 6 and S, the pressure field must be obtained diagnostically. We proceed,

as before, by dividing the total (pressure/geo) potential in to three parts, a surface part, ¢s(z,y), a hydrostatic part
®hya(x,y,r) and a non-hydrostatic part ¢, (x,y,7), as in (1.25), and writing the momentum equation as in (1.26).

1.3.6.1 Hydrostatic pressure

Hydrostatic pressure is obtained by integrating (1.27) vertically from r = R, where ¢pyq(r = R,) = 0, to yield:

R R
o 8 o
| i = o = [bar

and so

R,
Prya(w,y,r) = / bdr (1.33)

1.3. Continuous equations in ‘r’ coordinates 23

MITgcm Documentation, Release 1.0

Z

Vi (HY,p) = Siy(lad) 5 Par (M) = [~ g2
0
HPE an NH

Vipuy =V.G, =V, 2(ps + Puy)

ov v

8th =G, —V,(ps+ Pay) 2 =G, —V,(Ps+ Puy + Pyn)
f ow A P ny

w=-|V, v dz’ —_—=G,———
‘([h h at &

Figure 1.19: Basic solution strategy in MITgem. HPE and QH forms diagnose the vertical velocity, in NH a prognostic
equation for the vertical velocity is integrated.

The model can be easily modified to accommodate a loading term (e.g atmospheric pressure pushing down on the
ocean’s surface) by setting:

Ohyd(r = R,) = loading (1.34)

1.3.6.2 Surface pressure

The surface pressure equation can be obtained by integrating continuity, (1.3), vertically from r = Ry;zeq to 7 =

Rmoving
Rm.oving
/ (Vi - ¥+ 07)dr = 0
Ryized
Thus:
a ano'uing
—77+\7.V77+/ V- Vpdr =0
ot Ryized

where 7 = Ry,00ing — I, is the free-surface r-anomaly in units of r. The above can be rearranged to yield, using
Leibnitz’s theorem:

877 Rpoving .
— 4+ V- Vi dr = source (1.35)
ot Ryfized

where we have incorporated a source term.

24 Chapter 1. Overview

MITgcm Documentation, Release 1.0

Whether ¢ is pressure (ocean model, p/p.) or geopotential (atmospheric model), in (1.26), the horizontal gradient
term can be written

Vios = Vi (bsn) (1.36)

where b, is the buoyancy at the surface.

In the hydrostatic limit (e,,;, = 0), equations (1.26), (1.35) and (1.36) can be solved by inverting a 2-d elliptic equation
for ¢, as described in Chapter 2. Both ‘free surface’ and ‘rigid lid” approaches are available.

1.3.6.3 Non-hydrostatic pressure

Taking the horizontal divergence of (1.26) and adding % of (1.28), invoking the continuity equation (1.3), we deduce
that:

Vipun = V.Gy — (Vigs + Vi¢nya) = V.F (1.37)

For a given rhs this 3-d elliptic equation must be inverted for ¢,,;, subject to appropriate choice of boundary conditions.
This method is usually called The Pressure Method [Harlow and Welch (1965) [HW65]; Williams (1969) [Wil69];
Potter (1973) [Pot73]. In the hydrostatic primitive equations case (HPE), the 3-d problem does not need to be solved.

Boundary Conditions

We apply the condition of no normal flow through all solid boundaries - the coasts (in the ocean) and the bottom:

VA =0 (1.38)

where 7 is a vector of unit length normal to the boundary. The kinematic condition (1.38) is also applied to the
vertical velocity at 7 = Ry,oving. No-slip (vp = 0) or slip (Qvr/0n = 0) conditions are employed on the tangential
component of velocity, vy, at all solid boundaries, depending on the form chosen for the dissipative terms in the
momentum equations - see below.

Eq. (1.38) implies, making use of (1.26), that:

NV, =n.F (1.39)
where
F =Gy — (Vags + Vényd)

presenting inhomogeneous Neumann boundary conditions to the Elliptic problem (1.37). As shown, for example, by
Williams (1969) [Wil69], one can exploit classical 3D potential theory and, by introducing an appropriately chosen
d-function sheet of ‘source-charge’, replace the inhomogeneous boundary condition on pressure by a homogeneous
one. The source term rhs in (1.37) is the divergence of the vector F. By simultaneously setting 7. F = 0 and
1.V, = 0 on the boundary the following self-consistent but simpler homogenized Elliptic problem is obtained:

v2¢nh = Vf‘

1.3. Continuous equations in ‘r’ coordinates 25

MITgcm Documentation, Release 1.0

where F is a modified F such that F.7i = 0. As is implied by (1.39) the modified boundary condition becomes:

AV nn = 0 (1.40)

If the flow is ‘close’ to hydrostatic balance then the 3-d inversion converges rapidly because ¢, is then only a small
correction to the hydrostatic pressure field (see the discussion in Marshall et al. (1997a,b) [MHPA97] [MAH+97].

The solution ¢, to (1.37) and (1.39) does not vanish at r = R,,4ving, and so refines the pressure there.

1.3.7 Forcing/dissipation
1.3.7.1 Forcing

The forcing terms JF on the rhs of the equations are provided by ‘physics packages’ and forcing packages. These are
described later on.

1.3.7.2 Dissipation

Momentum

Many forms of momentum dissipation are available in the model. Laplacian and biharmonic frictions are commonly
used:

0%v

Dy = AViu+ A,
Vv hvhv+ 82’2

+ AyViv (1.41)

where Aj, and A, are (constant) horizontal and vertical viscosity coefficients and Ay is the horizontal coefficient for
biharmonic friction. These coefficients are the same for all velocity components.

Tracers

The mixing terms for the temperature and salinity equations have a similar form to that of momentum except that the
diffusion tensor can be non-diagonal and have varying coefficients.

Dr,s = V.[KV(T,S)] + K,Vi(T, S) (1.42)

where K is the diffusion tensor and the K4 horizontal coefficient for biharmonic diffusion. In the simplest case where
the subgrid-scale fluxes of heat and salt are parameterized with constant horizontal and vertical diffusion coefficients,
é , reduces to a diagonal matrix with constant coefficients:

Kn, 0 0
K=| 0 K, 0 (1.43)
0 0 K,

where K, and K, are the horizontal and vertical diffusion coefficients. These coefficients are the same for all tracers
(temperature, salinity ...).

26 Chapter 1. Overview

MITgcm Documentation, Release 1.0

1.3.8 Vector invariant form

For some purposes it is advantageous to write momentum advection in eq (1.1) and (1.2) in the (so-called) ‘vector
invariant’ form:

Dv oV

o 1.,
Dt_at—k(va)xv—i—V[?(v-v)] (1.44)

This permits alternative numerical treatments of the non-linear terms based on their representation as a vorticity flux.
Because gradients of coordinate vectors no longer appear on the rhs of (1.44), explicit representation of the metric
terms in (1.29), (1.30) and (1.31), can be avoided: information about the geometry is contained in the areas and
lengths of the volumes used to discretize the model.

1.3.9 Adjoint

Tangent linear and adjoint counterparts of the forward model are described in Section 7.

1.4 Appendix ATMOSPHERE

1.4.1 Hydrostatic Primitive Equations for the Atmosphere in Pressure Coordinates

The hydrostatic primitive equations (HPE’s) in p—coordinates are:

Dvy,

i + [k XV +Vyp=F (1.45)
9¢ +a=0 (1.46)
dp

. ow
Vo Vit 5o =0 (1.47)
pa = RT (1.48)

DT Da
- - — 1.49
e TP Q (1.49)

where V;, = (u, v, 0) is the ‘horizontal’ (on pressure surfaces) component of velocity, DQt = % +Vh-V, —|—wa% is the
total derivative, f = 2 sin is the Coriolis parameter, ¢ = gz is the geopotential, « = 1/p is the specific volume,
w = % is the vertical velocity in the p—coordinate. Equation (1.49) is the first law of thermodynamics where internal
energy e = ¢, T, T is temperature, () is the rate of heating per unit mass and p% is the work done by the fluid in
compressing.

It is convenient to cast the heat equation in terms of potential temperature 6 so that it looks more like a generic
conservation law. Differentiating (1.48) we get:

1.4. Appendix ATMOSPHERE 27

MITgcm Documentation, Release 1.0

which, when added to the heat equation (1.49) and using ¢, = ¢, + R, gives:

DT Dp
— = 1.50
“Dr "D - C (1:50)
Potential temperature is defined:
0= T(%)“ (1.51)

where p, is a reference pressure and k = R/c,. For convenience we will make use of the Exner function II(p) which
is defined by:

(p) = ¢ ()" (1.52)

The following relations will be useful and are easily expressed in terms of the Exner function:

Ol &I k19 ST DI O Dp
o _nr MY, 2 _ 9P
Op p D Op ' Dt 0Op Dt

cpT' =118 ;

where b = %—50 is the buoyancy.

The heat equation is obtained by noting that

DT D(IIf) Do DI Do Dp
= = ==+ 60— =T1— -
Dt Dt Dt + Dt Dt to Dt

and on substituting into (1.50) gives:

Do
ng: =9 (1.53)

which is in conservative form.
For convenience in the model we prefer to step forward (1.53) rather than (1.49).

1.4.1.1 Boundary conditions

The upper and lower boundary conditions are:

Dp
t the top: p = =— = 1.54
at the top: p =0, w Di 0 (1.54)
at the surface: p = ps, @ = dropo = 9 Ztopo (1.55)

In p—coordinates, the upper boundary acts like a solid boundary (w = 0); in z—coordinates the lower boundary is
analogous to a free surface (¢ is imposed and w # 0).

28 Chapter 1. Overview

MITgcm Documentation, Release 1.0

1.4.1.2 Splitting the geopotential

For the purposes of initialization and reducing round-off errors, the model deals with perturbations from reference (or
‘standard’) profiles. For example, the hydrostatic geopotential associated with the resting atmosphere is not dynami-
cally relevant and can therefore be subtracted from the equations. The equations written in terms of perturbations are
obtained by substituting the following definitions into the previous model equations:

0=0,+¢6¢ (1.56)
a=oa,+a (1.57)
¢ =do+ ¢ (1.58)

The reference state (indicated by subscript ‘0’) corresponds to horizontally homogeneous atmosphere at rest
(0o, v, ¢o) With surface pressure p,(z, y) that satisfies ¢, (Po) = g Ziopo. defined:

0o(p) = f"(p)

ao(p) = Tpf,
p

¢o(p) = ¢topo - / O4odp
P

(]

The final form of the HPE’s in p—coordinates is then:

ZZh + kX V4 Vpe = F (1.59)
%’; +a' =0 (1.60)
vp-e—'ﬁg—;:o (1.61)
%9’ =a (1.62)

%f :% (1.63)

1.4. Appendix ATMOSPHERE 29

MITgcm Documentation, Release 1.0

1.5 Appendix OCEAN

1.5.1 Equations of Motion for the Ocean

We review here the method by which the standard (Boussinesq, incompressible) HPE’s for the ocean written in
z—coordinates are obtained. The non-Boussinesq equations for oceanic motion are:

DV otk v + Vzp F (1.64)
Di
enh% + g+ ;glz) = eépnFw (1.65)
%% + V.t gw 0 (1.66)
= p(0,5,p) (1.67)
Do, (1.68)
Do, (1.69)

These equations permit acoustics modes, inertia-gravity waves, non-hydrostatic motions, a geostrophic (Rossby) mode
and a thermohaline mode. As written, they cannot be integrated forward consistently - if we step p forward in (1.66),
the answer will not be consistent with that obtained by stepping (1.68) and (1.69) and then using (1.67) to yield p. It
is therefore necessary to manipulate the system as follows. Differentiating the EOS (equation of state) gives:

Do _dp| D8 9p| DS 9p| Dp 70
Dt~ 04 as|, apl, s Dt (1.70)
Note that ap = L is the reciprocal of the sound speed (c,) squared. Substituting into (1.66) gives:
1 Dp
V. O,w =0 1.71
pc2 Dt +Ve ¥ Oun (1.71)

where we have used an approximation sign to indicate that we have assumed adiabatic motion, dropping the and
t . Replacing (1.66) with (1.71) yields a system that can be explicitly integrated forward:

Dv ~
2R pkox v, + vzp F (1.72)
Dt

Dw 10p
B ~ . Fu 1.73
eth-l—g-f—paZ EnnF ()

30 Chapter 1. Overview

MITgcm Documentation, Release 1.0

1 Dp o ow

pc2 Dt Ve Ta 0z =0 (7%
p=p(0,5,p) (1.75)

Do
- = 1.76
Dr Qp (1.76)

DS
- = 1.77
D1 Qs (L.77)

1.5.1.1 Compressible z-coordinate equations

Here we linearize the acoustic modes by replacing p with p,(z) wherever it appears in a product (ie. non-linear
term) - this is the ‘Boussinesq assumption’. The only term that then retains the full variation in p is the gravitational
acceleration:

Dvy,

. 1 R
+ fkxV,+—V.p=F (1.78)
Dt Po

Dw gp 1 0p
n — —_— —_—— = n w]-79
eth-l—po-i-pan EnnF ()

1 Dp N ow

poczﬁ‘f‘vz'vh‘f‘& =0 (180)
p=p(0,5,p) (1.81)
Do
- = 1.82
i Qp (1.82)
DS
— 1.83
i Qs (1.83)

These equations still retain acoustic modes. But, because the “compressible” terms are linearized, the pressure equa-
tion (1.80) can be integrated implicitly with ease (the time-dependent term appears as a Helmholtz term in the non-
hydrostatic pressure equation). These are the fruly compressible Boussinesq equations. Note that the EOS must have

the same pressure dependency as the linearized pressure term, ie. g—Z‘ = C%, for consistency.
0,5 s

1.5. Appendix OCEAN 31

MITgcm Documentation, Release 1.0

1.5.1.2 ‘Anelastic’ z-coordinate equations

The anelastic approximation filters the acoustic mode by removing the time-dependency in the continuity (now
pressure-) equation (1.80). This could be done simply by noting that % R —gpo% = —gp,w, but this leads to
an inconsistency between continuity and EOS. A better solution is to change the dependency on pressure in the EOS
by splitting the pressure into a reference function of height and a perturbation:

p = p(ea Sap0<z) + Esp/)

Remembering that the term g ¢ in continuity comes from differentiating the EOS, the continuity equation then be-
comes:
1 Dp, Dy’ L Ow
+e +V. Vip+—=0
PoC? < Dt * Dt 2T o2
If the time- and space-scales of the motions of interest are longer than those of acoustic modes, then L p << (%pt“ , V-
¥4) in the continuity equations and 2 L % g—z D = in the EOS (1.70). Thus we set ¢, = 0, removing
s 6,5

the dependency on p’ in the continuity equation and EOS. Expanding % = —gpow then leads to the anelastic
continuity equation:
0
V. ¥+ o~ L= (1.84)
0z ¢

A slightly different route leads to the quasi-Boussinesq continuity equation where we use the scaling aa%’ +V;5-p'V <<
V3 - poV yielding:

v, .4, 4 L2aw) (1.85)
po 0z
Equations (1.84) and (1.85) are in fact the same equation if:
1 3/’0 -9
Do 0z - 2

Again, note that if p,, is evaluated from prescribed 6, and S, profiles, then the EOS dependency on p,, and the term %
in continuity should be referred to those same profiles. The full set of ‘quasi-Boussinesq’ or ‘anelastic’ equations for
the ocean are then:

DVh

5 T kX + vzp F (1.86)
enh%’ + % + i% = ennFu (1.87)
vz-vh+ploa<az W _ (1.88)
p(0,S,p0(2)) (1.89)

%f — 0, (1.90)

%f — o, (1.91)

32 Chapter 1. Overview

MITgcm Documentation, Release 1.0

1.5.1.3 Incompressible z-coordinate equations

Here, the objective is to drop the depth dependence of p, and so, technically, to also remove the dependence of p on

Do- This would yield the “truly” incompressible Boussinesq equations:

DVh =
Zvh k ;
oy + f ><vh+pr F

Dw gp 10p
€n - a. = anw
th+pc+pcaz et

where p,. is a constant reference density of water.

1.5.1.4 Compressible non-divergent equations

(1.92)

(1.93)

(1.94)

(1.95)

(1.96)

(1.97)

The above “incompressible” equations are incompressible in both the flow and the density. In many oceanic appli-
cations, however, it is important to retain compressibility effects in the density. To do this we must split the density

thus:

p=potp

We then assert that variations with depth of p, are unimportant while the compressible effects in p’ are:

Po = Pc

p/ = p(97 S7p0(z)) — Po

This then yields what we can call the semi-compressible Boussinesq equations:

DVh | kot t 2V = F (1.98)
Dt Pe
Dw gp' 1 0p
it 1.
€Enh 0, Dt + — Pe Pe Oz 6thT_.w (99)
1.5. Appendix OCEAN 33

MITgcm Documentation, Release 1.0

v, 9+ 2 o (1.100)
0z

p'=p(0,5,p.(2)) — pe (1.101)
Do

Do _ 1.102

i Qo ()
DS

D5 _ 1.103

D1 Qs ()

Note that the hydrostatic pressure of the resting fluid, including that associated with p., is subtracted out since it has
no effect on the dynamics.

Though necessary, the assumptions that go into these equations are messy since we essentially assume a different
EOS for the reference density and the perturbation density. Nevertheless, it is the hydrostatic (e,, = 0) form of these
equations that are used throughout the ocean modeling community and referred to as the primitive equations (HPE’s).

1.6 Appendix OPERATORS

1.6.1 Coordinate systems

1.6.1.1 Spherical coordinates

In spherical coordinates, the velocity components in the zonal, meridional and vertical direction respectively, are given
by:

DX
U = T COS QDE

(see Figure 1.20) Here ¢ is the latitude, A the longitude, r the radial distance of the particle from the center of the
earth, €2 is the angular speed of rotation of the Earth and D/ Dt is the total derivative.

The ‘grad’ (V) and ‘div’ (V-) operators are defined by, in spherical coordinates:
vy (L 9190 9
T \rcosp A\ rdp’ Or
10 (r27;)

1 ou 0
V-v= P {8)\+&0<UCOS¢)}+

34 Chapter 1. Overview

MITgcm Documentation, Release 1.0

Polar axis

Figure 1.20: Spherical polar coordinates: longitude), latitude ¢ and r the distance from the center.

1.6. Appendix OPERATORS 35

MITgcm Documentation, Release 1.0

36

Chapter 1. Overview

CHAPTER 2

Discretization and Algorithm

This chapter lays out the numerical schemes that are employed in the core MITgcm algorithm. Whenever possible
links are made to actual program code in the MITgecm implementation. The chapter begins with a discussion of the
temporal discretization used in MITgem. This discussion is followed by sections that describe the spatial discretization.
The schemes employed for momentum terms are described first, afterwards the schemes that apply to passive and
dynamically active tracers are described.

2.1 Notation

Because of the particularity of the vertical direction in stratified fluid context, in this chapter, the vector notations are
mostly used for the horizontal component: the horizontal part of a vector is simply written V (instead of vy, or vV, in
chapter 1) and a 3D vector is simply written ¥ (instead of ¥ in chapter 1).

The notations we use to describe the discrete formulation of the model are summarized as follows.

General notation:

Az, Ay, Ar grid spacing in X, Y, R directions
Ac, Aw, Ag, A¢ + horizontal area of a grid cell surrounding 6, u, v, ¢ point
Vu, Vo, Vs Vo : Volume of the grid box surrounding w, v, w, € point

i, 7, k : current index relative to X, Y, R directions

Basic operators:

37

MITgcm Documentation, Release 1.0

0;: 0, = (I)i+1/2 - ‘1%‘71/2

SR = (Pig172 + Pi_12)/2

bz 0,0 = -0,

V = horizontal gradient operator : V& = {§,®, 5, P}

V- = horizontal divergence operator : V - f = i{&-Ay fp +0;Axt,}

V' = horizontal Laplacian operator : V' & =

-Vo

<l

2.2 Time-stepping

The equations of motion integrated by the model involve four prognostic equations for flow, u and v, temperature,
6, and salt/moisture, S, and three diagnostic equations for vertical flow, w, density/buoyancy, p/b, and pressure/geo-
potential, ¢p,q. In addition, the surface pressure or height may by described by either a prognostic or diagnostic
equation and if non-hydrostatics terms are included then a diagnostic equation for non-hydrostatic pressure is also
solved. The combination of prognostic and diagnostic equations requires a model algorithm that can march forward
prognostic variables while satisfying constraints imposed by diagnostic equations.

Since the model comes in several flavors and formulation, it would be confusing to present the model algorithm exactly
as written into code along with all the switches and optional terms. Instead, we present the algorithm for each of the
basic formulations which are:

1. the semi-implicit pressure method for hydrostatic equations with a rigid-lid, variables co-located in time and
with Adams-Bashforth time-stepping;

2. as 1 but with an implicit linear free-surface;

3. as 1 or 2 but with variables staggered in time;

4. as 1 or 2 but with non-hydrostatic terms included;
5. as 2 or 3 but with non-linear free-surface.

In all the above configurations it is also possible to substitute the Adams-Bashforth with an alternative time-stepping
scheme for terms evaluated explicitly in time. Since the over-arching algorithm is independent of the particular time-
stepping scheme chosen we will describe first the over-arching algorithm, known as the pressure method, with a
rigid-lid model in Section 2.3. This algorithm is essentially unchanged, apart for some coefficients, when the rigid
lid assumption is replaced with a linearized implicit free-surface, described in Section 2.4. These two flavors of the
pressure-method encompass all formulations of the model as it exists today. The integration of explicit in time terms
is out-lined in Section 2.5 and put into the context of the overall algorithm in Section 2.7 and Section 2.8. Inclusion
of non-hydrostatic terms requires applying the pressure method in three dimensions instead of two and this algorithm
modification is described in Section 2.9. Finally, the free-surface equation may be treated more exactly, including
non-linear terms, and this is described in Section 2.10.2.

38 Chapter 2. Discretization and Algorithm

MITgcm Documentation, Release 1.0

2.3 Pressure method with rigid-lid

The horizontal momentum and continuity equations for the ocean ((1.98) and (1.100)), or for the atmosphere ((1.45)
and (1.47)), can be summarized by:

Ou+ gon= Gy
0w+ goyn = G,
Oz + Oyv + O, w = 0
where we are adopting the oceanic notation for brevity. All terms in the momentum equations, except for surface

pressure gradient, are encapsulated in the G vector. The continuity equation, when integrated over the fluid depth, H,
and with the rigid-lid/no normal flow boundary conditions applied, becomes:

8, Hii+ 0,HD =0 2.1)

Here, Hu = |, 7 udz is the depth integral of w, similarly for Hv. The rigid-lid approximation sets w = 0 at the lid so
that it does not move but allows a pressure to be exerted on the fluid by the lid. The horizontal momentum equations
and vertically integrated continuity equation are be discretized in time and space as follows:

W 4 Atgdun™ Tt = ut + AtGHY?) (2.2)
" 4 Atgd, "t = o™ + AtGMTY2) (2.3)
0, Hun 1 + 8, Hont1 = 0 (2.4)

As written here, terms on the LHS all involve time level n + 1 and are referred to as implicit; the implicit backward
time stepping scheme is being used. All other terms in the RHS are explicit in time. The thermodynamic quantities
are integrated forward in time in parallel with the flow and will be discussed later. For the purposes of describing the
pressure method it suffices to say that the hydrostatic pressure gradient is explicit and so can be included in the vector
G.

Substituting the two momentum equations into the depth integrated continuity equation eliminates »"*! and v"*!
yielding an elliptic equation for " *1. Equations (2.2), (2.3) and (2.4) can then be re-arranged as follows:

ut = u" 4+ AtGT? (2.5)

vt =0" + AtGS,”H/Q) (2.6)

0. AtgH, " + 0,AtgHO, " = 8, Hu* + 9, Hv* (2.7)
u" = — Atgd,n" (2.8)

2.3. Pressure method with rigid-lid 39

MITgcm Documentation, Release 1.0

" =% — Atgo,n" ! (2.9)

Equations (2.5) to (2.9), solved sequentially, represent the pressure method algorithm used in the model. The essence
of the pressure method lies in the fact that any explicit prediction for the flow would lead to a divergence flow field
so a pressure field must be found that keeps the flow non-divergent over each step of the integration. The particular
location in time of the pressure field is somewhat ambiguous; in Figure 2.1 we depicted as co-located with the future
flow field (time level n + 1) but it could equally have been drawn as staggered in time with the flow.

: —— fime
nAt (n+1) At
(n+%)
u,v

G

%k
u,vi u,v

, \/{ i/

V2n=v.(lvlz)

l n+1
u,v

Figure 2.1: A schematic of the evolution in time of the pressure method algorithm. A prediction for the flow variables
at time level n + 1 is made based only on the explicit terms, Gt/ 2) and denoted u*, v*. Next, a pressure field is
found such that u™*!, v"*1 will be non-divergent. Conceptually, the * quantities exist at time level n + 1 but they are
intermediate and only temporary.

The correspondence to the code is as follows:
* the prognostic phase, equations (2.5) and (2.6), stepping forward u™ and v™ to u* and v* is coded in timestep.F

* the vertical integration, H u* and Ho*, divergence and inversion of the elliptic operator in equation (2.7) is
coded in solve_for_pressure.F

* finally, the new flow field at time level n+ 1 given by equations (2.8) and (2.9) is calculated in correction_step.F

The calling tree for these routines is as follows:

Pressure method calling tree

FORWARD_STEP

DYNAMICS
TIMESTEP u*,v* (2.5), (2.6)
SOLVE_FOR_PRESSURE
CALC_DIV_GHAT Hu*, Ho* (2.7)
CG2D Tt (2.7)

40 Chapter 2. Discretization and Algorithm

https://github.com/MITgcm/MITgcm/blob/master/model/src/timestep.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/solve_for_pressure.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/correction_step.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/forward_step.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/dynamics.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/timestep.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/solve_for_pressure.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/calc_div_ghat.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/cg2d.F

MITgcm Documentation, Release 1.0

MOMENTUM_CORRECTION_STEP
CALC_GRAD_PHI_SURF vyttt
CORRECTION_STEP u™th ot (2.8), (2.9)

In general, the horizontal momentum time-stepping can contain some terms that are treated implicitly in time, such as
the vertical viscosity when using the backward time-stepping scheme (implicitViscosity =.TRUE.). The method used
to solve those implicit terms is provided in Section 2.6, and modifies equations (2.2) and (2.3) to give:

" — A9, A0, u"T 4 Atgd "t = w4 AtGT/2)
V" — AtD, A, 00"+ Atgd, T = o™ + AtG /2

2.4 Pressure method with implicit linear free-surface

The rigid-lid approximation filters out external gravity waves subsequently modifying the dispersion relation of
barotropic Rossby waves. The discrete form of the elliptic equation has some zero eigenvalues which makes it a
potentially tricky or inefficient problem to solve.

The rigid-lid approximation can be easily replaced by a linearization of the free-surface equation which can be written:

on+0,Hi+90,Hi=P—E+R (2.10)
which differs from the depth integrated continuity equation with rigid-lid ((2.1)) by the time-dependent term and
fresh-water source term.

Equation (2.4) in the rigid-lid pressure method is then replaced by the time discretization of (2.10) which is:

0"+ Atd, Huntl + Atd, Hontl = o + AL(P — E) (2.11)

where the use of flow at time level n+ 1 makes the method implicit and backward in time. This is the preferred scheme
since it still filters the fast unresolved wave motions by damping them. A centered scheme, such as Crank-Nicholson
(see Section 2.10.1), would alias the energy of the fast modes onto slower modes of motion.

As for the rigid-lid pressure method, equations (2.2), (2.3) and (2.11) can be re-arranged as follows:

ut = u" 4+ AtG Y2 (2.12)

v* =" + AtG Y2 (2.13)

0" = er(N" + AP — E)) — At(8, Hu* + 8,Hv*) (2.14)
0pgHOm"+t + 8,gHO, "+ — fo;“ _ Z; (2.15)
u" = — Atgd,n" (2.16)

2.4. Pressure method with implicit linear free-surface 41

https://github.com/MITgcm/MITgcm/blob/master/model/src/momentum_correction_step.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/calc_grad_phi_surf.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/correction_step.F
http://mitgcm.org/lxr/ident/MITgcm?_i=implicitViscosity

MITgcm Documentation, Release 1.0

o = — Atgayn”H (2.17)

Equations (2.12) to (2.17), solved sequentially, represent the pressure method algorithm with a backward implicit,
linearized free surface. The method is still formerly a pressure method because in the limit of large At the rigid-
lid method is recovered. However, the implicit treatment of the free-surface allows the flow to be divergent and for
the surface pressure/elevation to respond on a finite time-scale (as opposed to instantly). To recover the rigid-lid
formulation, we introduced a switch-like parameter, €7, (freesurfFac), which selects between the free-surface and
rigid-lid; ey, = 1 allows the free-surface to evolve; es = 0 imposes the rigid-lid. The evolution in time and location
of variables is exactly as it was for the rigid-lid model so that Figure 2.1 is still applicable. Similarly, the calling
sequence, given /iere, is as for the pressure-method.

2.5 Explicit time-stepping: Adams-Bashforth

In describing the the pressure method above we deferred describing the time discretization of the explicit terms. We
have historically used the quasi-second order Adams-Bashforth method for all explicit terms in both the momentum
and tracer equations. This is still the default mode of operation but it is now possible to use alternate schemes for
tracers (see Section 2.16). In the previous sections, we summarized an explicit scheme as:

= AKGE) 2.18)

where 7 could be any prognostic variable (u, v, § or S) and 7* is an explicit estimate of 7! and would be exact if not
for implicit-in-time terms. The parenthesis about n + 1/2 indicates that the term is explicit and extrapolated forward
in time and for this we use the quasi-second order Adams-Bashforth method:

G2 = (3/24 eap)Gy — (1/2+ €ap)G! (2.19)

This is a linear extrapolation, forward in time, to t = (n 4+ 1/2 + € 45)At. An extrapolation to the mid-point in time,
t = (n+ 1/2)At, corresponding to e 45 = 0, would be second order accurate but is weakly unstable for oscillatory
terms. A small but finite value for e 4 5 stabilizes the method. Strictly speaking, damping terms such as diffusion and
dissipation, and fixed terms (forcing), do not need to be inside the Adams-Bashforth extrapolation. However, in the
current code, it is simpler to include these terms and this can be justified if the flow and forcing evolves smoothly.
Problems can, and do, arise when forcing or motions are high frequency and this corresponds to a reduced stability
compared to a simple forward time-stepping of such terms. The model offers the possibility to leave terms outside
the Adams-Bashforth extrapolation, by turning off the logical flag forcing_In_AB (parameter file data, namelist
PARMO1, default value = TRUE) and then setting tracForcingOutAB (default=0), momForcingOutAB (default=0),
and momDissip_In_AB (parameter file data, namelist PARMO1, default value = TRUE), respectively for the tracer
terms, momentum forcing terms, and the dissipation terms.

A stability analysis for an oscillation equation should be given at this point.

A stability analysis for a relaxation equation should be given at this point.

2.6 Implicit time-stepping: backward method

Vertical diffusion and viscosity can be treated implicitly in time using the backward method which is an intrinsic
scheme. Recently, the option to treat the vertical advection implicitly has been added, but not yet tested; therefore, the
description hereafter is limited to diffusion and viscosity. For tracers, the time discretized equation is:

42 Chapter 2. Discretization and Algorithm

http://mitgcm.org/lxr/ident/MITgcm?_i=freesurfFac
http://mitgcm.org/lxr/ident/MITgcm?_i=forcing_In_AB
http://mitgcm.org/lxr/ident/MITgcm?_i=tracForcingOutAB
http://mitgcm.org/lxr/ident/MITgcm?_i=momForcingOutAB
http://mitgcm.org/lxr/ident/MITgcm?_i=momDissip_In_AB

MITgcm Documentation, Release 1.0

¢ =0.00 ¢ =0.00; Mc= 1.0000
1 r
1.2
0.5
S
0.8 0
0.6 05
0.4
-1
0.2 x
7
7
0 15
0 02 04 06 08 1 0 0.5 1
£=0.10f=0.5025 £=0.10 ;= 0.9091
1
1.2
0.5
|
0.8 0
06 -05
0.4
-1
0.2 P
7
7
0 : : : : 15 : :
0 02 04 06 08 1 0 0.5 1
£=0.25;=05963 £=0.25 ;= 0.8000
1.4 1
1.2
0.5
|
0.8 0
0.6 -05
0.4
b -1
0.2 P
7
7
0 -15
0 02 04 06 08 1 0 0.5 1

Figure 2.2: Oscillatory and damping response of quasi-second order Adams-Bashforth scheme for different values of
the € 4 5 parameter (0.0, 0.1, 0.25, from top to bottom) The analytical solution (in black), the physical mode (in blue)
and the numerical mode (in red) are represented with a CFL step of 0.1. The left column represents the oscillatory
response on the complex plane for CFL ranging from 0.1 up to 0.9. The right column represents the damping response
amplitude (y-axis) function of the CFL (x-axis).

2.6. Implicit time-stepping: backward method 43

MITgcm Documentation, Release 1.0

A9k, 0T = 7 4 AtGnHL/2) (2.20)
where G(T”H/ ?) is the remaining explicit terms extrapolated using the Adams-Bashforth method as described above.

Equation (2.20) can be split split into:

™ = 1" 4+ AtGT/2) 2.21)
sl [;1(7-*) (2.22)

where £ is the inverse of the operator
L =[14 Atd,£,0r]

Equation (2.21) looks exactly as (2.18) while (2.22) involves an operator or matrix inversion. By re-arranging (2.20)
in this way we have cast the method as an explicit prediction step and an implicit step allowing the latter to be inserted
into the over all algorithm with minimal interference.

The calling sequence for stepping forward a tracer variable such as temperature with implicit diffusion is as follows:

Adams-Bashforth calling tree
FORWARD_STEP

THERMODYNAMICS
TEMP_INTEGRATE
GAD_CALC_RHS n— Gy(u,6")
either
EXTERNAL_FORCING Gy =Gy +9Q
ADAMS_BASHFORTH2 G{"'/? (2.19)
or
EXTERNAL_FORCING G2 — gnt/2 4 9
TIMESTEP_TRACER 7 (2.18)
IMPLDIFF (1) (2.22)

In order to fit within the pressure method, the implicit viscosity must not alter the barotropic flow. In other words, it
can only redistribute momentum in the vertical. The upshot of this is that although vertical viscosity may be backward
implicit and unconditionally stable, no-slip boundary conditions may not be made implicit and are thus cast as a an
explicit drag term.

2.7 Synchronous time-stepping: variables co-located in time

The Adams-Bashforth extrapolation of explicit tendencies fits neatly into the pressure method algorithm when all state
variables are co-located in time. The algorithm can be represented by the sequential solution of the follow equations:

Gps=Gos(u",0m,8") (2.23)

44 Chapter 2. Discretization and Algorithm

https://github.com/MITgcm/MITgcm/blob/master/model/src/forward_step.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/thermodynamics.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/temp_integrate.F
https://github.com/MITgcm/MITgcm/blob/master/pkg/generic_advdiff/gad_calc_rhs.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/external_forcing.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/adams_bashforth2.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/external_forcing.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/timestep_tracer.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/impldiff.F

MITgcm Documentation, Release 1.0

: : - fime
(n—1) At nAt (n+1) At
n-1_________ n__ (n+%)
GGS , GBS - GGS .
p.s"! e,s“\l/ 0.5
| >
0 [os
l h G,Sn+1
n-1_______"°__ n__ (n+%)
Gu,v Gu,v - Gu \%
u,yn-1 u,vn\l/(uyv’
i
Lu,V
{ n+1
u,v

Figure 2.3: A schematic of the explicit Adams-Bashforth and implicit time-stepping phases of the algorithm. All
prognostic variables are co-located in time. Explicit tendencies are evaluated at time level n as a function of the state
at that time level (dotted arrow). The explicit tendency from the previous time level, n — 1, is used to extrapolate
tendencies to n + 1/2 (dashed arrow). This extrapolated tendency allows variables to be stably integrated forward-
in-time to render an estimate (x -variables) at the n + 1 time level (solid arc-arrow). The operator £ formed from
implicit-in-time terms is solved to yield the state variables at time level n + 1.

2.7. Synchronous time-stepping: variables co-located in time 45

MITgcm Documentation, Release 1.0

GydY® = (3/2+ eap)Gh s — (1/2 + eap)Gy s (2.24)
(6°,5%) = (6", 5™) + AtGYy'S P (2.25)

(6", S = Ly 5(6%,57) (2.26)

Ohya= [000", 5")dr 0

G2 = G4 (V", ¢}ya) (2.28)

GUTV = (3/2+ ap)GE — (1/2+ eap)GL! (2.29)
V=" 4+ AGYT?) (2.30)

V= LN (V) (2.31)

0= ess (1" + AP — E)) — AtV - Hy (2.32)
V. gHV ! - Y 27:1 - —X; (2.33)

VTl = ¢ — AtgVy T (2.34)

Figure 2.3 illustrates the location of variables in time and evolution of the algorithm with time. The Adams-Bashforth
extrapolation of the tracer tendencies is illustrated by the dashed arrow, the prediction at n + 1 is indicated by the
solid arc. Inversion of the implicit terms, E;}g, then yields the new tracer fields at n + 1. All these operations are
carried out in subroutine THERMODYNAMICS and subsidiaries, which correspond to equations (2.23) to (2.26).
Similarly illustrated is the Adams-Bashforth extrapolation of accelerations, stepping forward and solving of implicit
viscosity and surface pressure gradient terms, corresponding to equations (2.28) to (2.34). These operations are carried
out in subroutines DYNAMICS, SOLVE_FOR_PRESSURE and MOMENTUM_CORRECTION_STEP. This, then,
represents an entire algorithm for stepping forward the model one time-step. The corresponding calling tree for the
overall synchronous algorithm using Adams-Bashforth time-stepping is given below. The place where the model
geometry hFac factors) is updated is added here but is only relevant for the non-linear free-surface algorithm. For
completeness, the external forcing, ocean and atmospheric physics have been added, although they are mainly optional.

Synchronous Adams-Bashforth calling tree

46 Chapter 2. Discretization and Algorithm

https://github.com/MITgcm/MITgcm/blob/master/model/src/thermodynamics.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/dynamics.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/solve_for_pressure.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/momentum_correction_step.F
http://mitgcm.org/lxr/ident/MITgcm?_i=hFac

MITgcm Documentation, Release 1.0

FORWARD_STEP
EXTERNAL_FIELDS_LOAD
DO_ATMOSPHERIC_PHYS
DO_OCEANIC_PHYS

THERMODYNAMICS
CALC_GT
GAD_CALC_RHS n = Gy(u, ™) (2.23)
EXTERNAL_FORCING Gpr=Gyp+Q
ADAMS_BASHFORTH2 G (2.04)
TIMESTEP_TRACER 0* (2.25)
IMPLDIFF 6(n+1) (2.26)
DYNAMICS
CALC_PHI_HYD O a (2.27)
MOM_FLUXFORM or MOM_VECINV G% (2.28)
TIMESTEP V* (2.29), (2.30)
IMPLDIFF v (2.31)

UPDATE_R_STAR or UPDATE_SURF_DR (NonLin-FS only)
SOLVE_FOR_PRESSURE

CALC_DIV_GHAT n* (2.32)

CG2D n"t1(2.33)
MOMENTUM_CORRECTION_STEP

CALC_GRAD_PHI_SURF vyt

CORRECTION_STEP uttl ot (2.34)
TRACERS_CORRECTION_STEP

CYCLE_TRACER g+t

SHAP_FILT_APPLY_TS or ZONAL_FILT_APPLY_TS
CONVECTIVE_ADJUSTMENT

2.8 Staggered baroclinic time-stepping

For well-stratified problems, internal gravity waves may be the limiting process for determining a stable time-step. In
the circumstance, it is more efficient to stagger in time the thermodynamic variables with the flow variables. Figure
2.4 illustrates the staggering and algorithm. The key difference between this and Figure 2.3 is that the thermodynamic
variables are solved after the dynamics, using the recently updated flow field. This essentially allows the gravity wave
terms to leap-frog in time giving second order accuracy and more stability.

The essential change in the staggered algorithm is that the thermodynamics solver is delayed from half a time step,
allowing the use of the most recent velocities to compute the advection terms. Once the thermodynamics fields are
updated, the hydrostatic pressure is computed to step forward the dynamics. Note that the pressure gradient must also
be taken out of the Adams-Bashforth extrapolation. Also, retaining the integer time-levels, n and n + 1, does not
give a user the sense of where variables are located in time. Instead, we re-write the entire algorithm, (2.23) to (2.34),
annotating the position in time of variables appropriately:

DPhya = / b(o", S™)dr (2.35)

2.8. Staggered baroclinic time-stepping 47

https://github.com/MITgcm/MITgcm/blob/master/model/src/forward_step.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/external_fields_load.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/do_atmospheric_phys.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/do_oceanic_phys.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/thermodynamics.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/calc_gt.F
https://github.com/MITgcm/MITgcm/blob/master/pkg/generic_advdiff/gad_calc_rhs.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/external_forcing.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/adams_bashforth2.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/timestep_tracer.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/impldiff.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/dynamics.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/calc_phi_hyd.F
https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_fluxform/mom_fluxform.F
https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_vecinv/mom_vecinv.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/timestep.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/impldiff.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/update_r_star.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/update_surf_dr.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/solve_for_pressure.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/calc_div_ghat.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/cg2d.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/momentum_correction_step.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/calc_grad_phi_surf.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/correction_step.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/tracers_correction_step.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/cycle_tracer.F
https://github.com/MITgcm/MITgcm/blob/master/pkg/shap_filt/shap_filt_apply_ts.F
https://github.com/MITgcm/MITgcm/blob/master/pkg/zonal_filt/zonal_filt_apply_ts.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/convective_adjustment.F

MITgcm Documentation, Release 1.0

(n—1%) At (n=1%) At (n+}%) At
: : : : : — fime
(n—1) At nAt (n+1) At
n—1 n (n+)%)
Ggs ~~ """ Gys ™G
1 9% 05)
/'/ ‘ —1
i l Lgg
i V| n+1
@y, 0,S
n=1%_ . " M
u,v u,v N | R
n—1% n—-% l *
D ,V \ u,v
\/ | »
L u,v
(n+%)
u,v

Figure 2.4: A schematic of the explicit Adams-Bashforth and implicit time-stepping phases of the algorithm but with
bles with the flow. Explicit momentum tendencies are evaluated at time
level n — 1/2 as a function of the flow field at that time level n — 1/2. The explicit tendency from the previous time
level, n — 3/2, is used to extrapolate tendencies to n (dashed arrow). The hydrostatic pressure/geo-potential ¢y, q
al arrows) and used with the extrapolated tendencies to step forward the
flow variables from n — 1/2 to n + 1/2 (solid arc-arrow). The implicit-in-time operator £,, v (vertical arrows) is then
applied to the previous estimation of the the flow field (x -variables) and yields to the two velocity components u, v at
calculate the advection term (dashed arc-arrow) of the thermo-dynamics
tendencies at time step n. The extrapolated thermodynamics tendency, from time level n — 1 and n to n + 1/2, allows

staggering in time of thermodynamic varia

is evaluated directly at time level n (vertic

time level n + 1/2. These are then used to

thermodynamic variables to be stably integrated forward-in-time (solid arc-arrow) up to time level n + 1.

48

Chapter 2. Discretization and Algorithm

MITgcm Documentation, Release 1.0

43—1/2 _ éc(‘ﬁ;n—l/2)
G = (3/2+ eap)GL % — (1/2 4 eap)GL /2

v v

V=2 AL (G - Vi)

T = efs (n”*/? AP - E)") ~ AtV - HY™

n+1/2 *
CaH n+1/2_L — —L
\% g V77 At2 At2
V2 = 9 Agg Vg2
Gys= Go,s(u" /2,07, 57)
GE)?SH/Q) = (3/2+eap)Ghs — (1/2+eap)Gy g

(6%, 5%) = (67, 5™) + AtGTg)

(0n+175n+1) _ [’—71‘9(9*’5*)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)

The corresponding calling tree is given below. The staggered algorithm is activated with the run-time flag stagger-

TimeStep =.TRUE. in parameter file dat a, namelist PARMO1.

Staggered Adams-Bashforth calling tree

FORWARD_STEP
EXTERNAL_FIELDS_LOAD
DO_ATMOSPHERIC_PHYS
DO_OCEANIC_PHYS

DYNAMICS
CALC_PHI_HYD 7 (2.35)

2.8. Staggered baroclinic time-stepping

49

http://mitgcm.org/lxr/ident/MITgcm?_i=staggerTimeStep
http://mitgcm.org/lxr/ident/MITgcm?_i=staggerTimeStep
https://github.com/MITgcm/MITgcm/blob/master/model/src/forward_step.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/external_fields_load.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/do_atmospheric_phys.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/do_oceanic_phys.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/dynamics.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/calc_phi_hyd.F

MITgcm Documentation, Release 1.0

MOM_FLUXFORM or MOM_VECINV n=12 (2.36)
TIMESTEP ¥ (2.37), (2.38)
IMPLDIFF ¥ (2.39)

UPDATE_R_STAR or UPDATE_SURF_DR (NonLin-FS only)
SOLVE_FOR_PRESSURE

CALC_DIV_GHAT n* (2.40)
CG2D g2 (2.41)
MOMENTUM_CORRECTION_STEP
CALC_GRAD_PHI_SURF vy tl/2
CORRECTION_STEP w2 yntl/2 (2 42)
THERMODYNAMICS
CALC_GT
GAD_CALC_RHS G = Go(u, 0™) (2.43)
EXTERNAL_FORCING n=GF+Q
ADAMS_BASHFORTH?2 G (2,44
TIMESTEP_TRACER 0 (2.45)
IMPLDIFF 6" +1) (2.46)
TRACERS_CORRECTION_STEP
CYCLE_TRACER o+l

SHAP_FILT_APPLY_TS or ZONAL_FILT_APPLY_TS
CONVECTIVE_ADJUSTMENT

The only difficulty with this approach is apparent in equation (2.43) and illustrated by the dotted arrow connecting
u, v /2 with Gy . The flow used to advect tracers around is not naturally located in time. This could be avoided by
applying the Adams-Bashforth extrapolation to the tracer field itself and advecting that around but this approach is not
yet available. We’re not aware of any detrimental effect of this feature. The difficulty lies mainly in interpretation of
what time-level variables and terms correspond to.

2.9 Non-hydrostatic formulation

The non-hydrostatic formulation re-introduces the full vertical momentum equation and requires the solution of a 3-D
elliptic equations for non-hydrostatic pressure perturbation. We still integrate vertically for the hydrostatic pressure
and solve a 2-D elliptic equation for the surface pressure/elevation for this reduces the amount of work needed to solve
for the non-hydrostatic pressure.

The momentum equations are discretized in time as follows:

1 1
U g0 0,0 = ot GUY) 247)
1 1
V" g0+ Oyt = vt G{n+1/2) (2.48)
Loy gl = Lo 4 qnt1/2) (2.49)
At Trnh A v .

which must satisfy the discrete-in-time depth integrated continuity, equation (2.11) and the local continuity equation

50 Chapter 2. Discretization and Algorithm

https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_fluxform/mom_fluxform.F
https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_vecinv/mom_vecinv.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/timestep.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/impldiff.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/update_r_star.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/update_surf_dr.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/solve_for_pressure.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/calc_div_ghat.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/cg2d.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/momentum_correction_step.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/calc_grad_phi_surf.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/correction_step.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/thermodynamics.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/calc_gt.F
https://github.com/MITgcm/MITgcm/blob/master/pkg/generic_advdiff/gad_calc_rhs.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/external_forcing.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/adams_bashforth2.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/timestep_tracer.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/impldiff.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/tracers_correction_step.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/cycle_tracer.F
https://github.com/MITgcm/MITgcm/blob/master/pkg/shap_filt/shap_filt_apply_ts.F
https://github.com/MITgcm/MITgcm/blob/master/pkg/zonal_filt/zonal_filt_apply_ts.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/convective_adjustment.F

MITgcm Documentation, Release 1.0

Apuntt + 8yv"+1 + 9wt =0 (2.50)
As before, the explicit predictions for momentum are consolidated as:

w = u" + AtGH/2)
vt = " 4+ AtGE}7L+1/2)
w'= w"+ AtGEf+1/2)
but this time we introduce an intermediate step by splitting the tendency of the flow as follows:

un+1 _ ’U,** _ Atam(bzzl u** — U* _ Atgaq:nn+1

UTL+1 _ ’U** _ Atay(bzzl ’U** — ’U* _ Aﬁgaynn-‘rl

Substituting into the depth integrated continuity (equation (2.11)) gives

*

n+1
n+1 Tn+1 n+1 Tn+1 €fsT] _ Ui
0pHO, (gn™+ + 5) + 0,10, (0" + aypt) = Ll = - 2.51)

which is approximated by equation (2.15) on the basis that i) QSZ# is not yet known and ii) VqAﬁnh << gVn. If (2.15)

is solved accurately then the implication is that ¢,;, ~ 0 so that the non-hydrostatic pressure field does not drive
barotropic motion.

The flow must satisfy non-divergence (equation (2.50)) locally, as well as depth integrated, and this constraint is used
to form a 3-D elliptic equations for ¢Z;1:

Oua®pf "+ Oyt + Opr i = O™ + 0yv*™ + Opw” (2.52)

The entire algorithm can be summarized as the sequential solution of the following equations:

ut = u" 4+ AtGT?) (2.53)

v* = 0" + AtG(T/2) (2.54)

w* = w" + AtGH) (2.55)

0 = e (" + AP — E)) — At (am? + ayH&) (2.56)
g HOu™ + 0,gH O, — fo;“ _ X; (2.57)
u** = u* — Atgd,n" ! (2.58)

2.9. Non-hydrostatic formulation 51

MITgcm Documentation, Release 1.0

v =" — Atgd,n" Tt (2.59)

Dpw I + Oy + O = Opu™ 4 Oyv** + O (2.60)
u"t = ut — A9, (2.61)

" =0 — A9, 7! (2.62)

Opw" Tt = gt — (“)yv"'H (2.63)

where the last equation is solved by vertically integrating for w™*!,

2.10 Variants on the Free Surface

We now describe the various formulations of the free-surface that include non-linear forms, implicit in time using
Crank-Nicholson, explicit and [one day] split-explicit. First, we’ll reiterate the underlying algorithm but this time using
the notation consistent with the more general vertical coordinate r. The elliptic equation for free-surface coordinate
(units of r), corresponding to (2.11), and assuming no non-hydrostatic effects (e,,;, = 0) is:

€rsn™ T = Vi A (R, — Rypized)Vibsn™ ™ = n* (2.64)
where
Ro
0= epe ™ — AtV - / Vdr + ep AP — E)" (2.65)
Ryfized

S/R SOLVE_FOR_PRESSURE

u* : gU (DYNVARS.h)

v*: gV (DYNVARS.h)

n* : cg2d_b (SOLVE_FOR_PRESSURE.h)
n™*tl : etaN (DYNVARS.h)

Once n™*! has been found, substituting into (2.2), (2.3) yields v"*1 if the model is hydrostatic (e, = 0):
g y Yy
VL = — AtV bt

This is known as the correction step. However, when the model is non-hydrostatic (¢, = 1) we need an additional
step and an additional equation for ¢/, . This is obtained by substituting (2.47), (2.48) and (2.49) into continuity:

52 Chapter 2. Discretization and Algorithm

http://mitgcm.org/lxr/ident/MITgcm?_i=gU
https://github.com/MITgcm/MITgcm/blob/master/model/inc/DYNVARS.h
http://mitgcm.org/lxr/ident/MITgcm?_i=gV
https://github.com/MITgcm/MITgcm/blob/master/model/inc/DYNVARS.h
http://mitgcm.org/lxr/ident/MITgcm?_i=cg2d_b
https://github.com/MITgcm/MITgcm/blob/master/model/inc/SOLVE_FOR_PRESSURE.h
http://mitgcm.org/lxr/ident/MITgcm?_i=etaN
https://github.com/MITgcm/MITgcm/blob/master/model/inc/DYNVARS.h

MITgcm Documentation, Release 1.0

n 1 kK . %
Vi + 010" = 5 Vi V7 + 0,0 (2.66)
where
V= — Atvhbsn”“

Note that n”*! is also used to update the second RHS term 0,.7+* since the vertical velocity at the surface (g, £) s
evaluated as (™! — ™) /At.

Finally, the horizontal velocities at the new time level are found by:

L= W AtV (2.67)

and the vertical velocity is found by integrating the continuity equation vertically. Note that, for the convenience of
the restart procedure, the vertical integration of the continuity equation has been moved to the beginning of the time
step (instead of at the end), without any consequence on the solution.

S/R CORRECTION_STEP

n™t1: etaN (DYNVARS.h)
¢+ : phi_nh (NH_VARS.h)
u* : gU (DYNVARS.h)

v* : gV (DYNVARS.h)
u™*1: uVel (DYNVARS.h)
v" 1 yVel (DYNVARS.h)

Regarding the implementation of the surface pressure solver, all computation are done within the routine
SOLVE_FOR_PRESSURE and its dependent calls. The standard method to solve the 2D elliptic problem (2.64)
uses the conjugate gradient method (routine CG2D); the solver matrix and conjugate gradient operator are only func-
tion of the discretized domain and are therefore evaluated separately, before the time iteration loop, within INI_CG2D.
The computation of the RHS 7n* is partly done in CALC_DIV_GHAT and in SOLVE_FOR_PRESSURE.

The same method is applied for the non hydrostatic part, using a conjugate gradient 3D solver (CG3D) that is initialized
in INI_CG3D. The RHS terms of 2D and 3D problems are computed together at the same point in the code.

2.10.1 Crank-Nicolson barotropic time stepping

The full implicit time stepping described previously is unconditionally stable but damps the fast gravity waves, result-
ing in a loss of potential energy. The modification presented now allows one to combine an implicit part (3,) and
an explicit part (1 — 8,1 — ~) for the surface pressure gradient (5) and for the barotropic flow divergence (). For
instance, 5 = v = 1 is the previous fully implicit scheme; 5 = v = 1/2 is the non damping (energy conserving),
unconditionally stable, Crank-Nicolson scheme; (5,v) = (1,0) or = (0, 1) corresponds to the forward - backward
scheme that conserves energy but is only stable for small time steps. In the code, 3,y are defined as parameters, re-
spectively implicSurfPress, implicDiv2DFlow. They are read from the main parameter file data (namelist PARMO1)
and are set by default to 1,1.

Equations (2.12) — (2.17) are modified as follows:

VnJrl

At

\771

At

Vb BT+ (1= B + eanVadl, T = =+ GETYD L v, TP

2.10. Variants on the Free Surface 53

http://mitgcm.org/lxr/ident/MITgcm?_i=etaN
https://github.com/MITgcm/MITgcm/blob/master/model/inc/DYNVARS.h
http://mitgcm.org/lxr/ident/MITgcm?_i=phi_nh
https://github.com/MITgcm/MITgcm/blob/master/model/inc/NH_VARS.h
http://mitgcm.org/lxr/ident/MITgcm?_i=gU
https://github.com/MITgcm/MITgcm/blob/master/model/inc/DYNVARS.h
http://mitgcm.org/lxr/ident/MITgcm?_i=gV
https://github.com/MITgcm/MITgcm/blob/master/model/inc/DYNVARS.h
http://mitgcm.org/lxr/ident/MITgcm?_i=uVel
https://github.com/MITgcm/MITgcm/blob/master/model/inc/DYNVARS.h
http://mitgcm.org/lxr/ident/MITgcm?_i=vVel
https://github.com/MITgcm/MITgcm/blob/master/model/inc/DYNVARS.h
https://github.com/MITgcm/MITgcm/blob/master/model/src/solve_for_pressure.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/cg2d.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/ini_cg2d.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/calc_div_ghat.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/solve_for_pressure.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/cg3d.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/ini_cg3d.F
http://mitgcm.org/lxr/ident/MITgcm?_i=implicSurfPress
http://mitgcm.org/lxr/ident/MITgcm?_i=implicDiv2DFlow

MITgcm Documentation, Release 1.0

We set

nn+1 _ ,r}n R,
s AL + V- / [y 4 (1 — 4)¥")dr = erw(P—E) (2.68)
Rfized
V= 9 AGETYD (B = 1)AIV b + AtV "
R,
n* = efsnn + EfwAt(P — E) — AtVy, - / [Wv* + (1 - W)Vn]dT'
Rfized

In the hydrostatic case ¢,,;, = 0, allowing us to find " **, thus:

efs77n+1 - vh . 67At2bs(Ro - Rfized)vhnn+l = 77*

and then to compute (CORRECTION_STEP):

‘—;n-&-l — v — BAtvhbsnTH—l

Notes:

1. The RHS term of equation (2.68) corresponds the contribution of fresh water flux (P-E) to the free-surface

variations (ef,, = 1, useRealFreshWaterFlux = TRUE. in parameter file data). In order to remain consistent
with the tracer equation, specially in the non-linear free-surface formulation, this term is also affected by the
Crank-Nicolson time stepping. The RHS reads: ¢, (y(P — E)"t1/2 4 (1 — 7)(P — E)"~1/?)

. The stability criteria with Crank-Nicolson time stepping for the pure linear gravity wave problem in cartesian

coordinates is:
* 8+~ < 1:unstable
e f>1/2and~y > 1/2: stable

© B4y >1:stableif 2, (8 —1/2)(y — 1/2) + 1 > 0 with oy = 286\/gH |/ 5bz + 5z

. A similar mixed forward/backward time-stepping is also available for the non-hydrostatic algorithm, with a

fraction B, (0 < B, < 1) of the non-hydrostatic pressure gradient being evaluated at time step n + 1
(backward in time) and the remaining part (1 — (,,;,) being evaluated at time step n (forward in time). The run-
time parameter implicitNHPress corresponding to the implicit fraction (3., of the non-hydrostatic pressure is set
by default to the implicit fraction 3 of surface pressure (implicSurfPress), but can also be specified independently
(in main parameter file data, namelist PARMO1).

2.10.2 Non-linear free-surface

Options have been added to the model that concern the free surface formulation.

2.10.2.1 Pressure/geo-potential and free surface

For the atmosphere, since ¢ = Gropo — |, zf) ~adp, subtracting the reference state defined in section Section 1.4.1.2 :

D
d)o = ¢topo - / aodp with ¢o(po) = d)topo

Po
we get:
Ps Po
o =6-6,= [ado- [audp
p p
54 Chapter 2. Discretization and Algorithm

https://github.com/MITgcm/MITgcm/blob/master/model/src/correction_step.F
http://mitgcm.org/lxr/ident/MITgcm?_i=useRealFreshWaterFlux
http://mitgcm.org/lxr/ident/MITgcm?_i=implicitNHPress
http://mitgcm.org/lxr/ident/MITgcm?_i=implicSurfPress

MITgcm Documentation, Release 1.0

For the ocean, the reference state is simpler since p. does not dependent on z (b, = g) and the surface reference
position is uniformly z = 0 (R, = 0), and the same subtraction leads to a similar relation. For both fluids, using the

isomorphic notations, we can write:
Tsurf R,
= / bdr — / bodr
T T

and re-write as:

Tsurf R,
¢ = / bdr+ / (b —b,)dr (2.69)
R, r
or:
Tsurf Tsurf
¢ = / bodr + / (b — by)dr (2.70)
R, T

In section Section 1.3.6, following eq. (2.69), the pressure/geo-potential ¢ has been separated into surface (¢,), and
hydrostatic anomaly (¢},,,4)- In this section, the split between ¢, and ¢}, ; is made according to equation (2.70). This
slightly different definition reflects the actual implementation in the code and is valid for both linear and non-linear
free-surface formulation, in both r-coordinate and r*-coordinate.

Because the linear free-surface approximation ignores the tracer content of the fluid parcel between R, and 7y f =
R, + n, for consistency reasons, this part is also neglected in (b;Ly q:

Tsurf R,
¢>’hyd:/ (b—bo)dr:/ (b— by)dr

Note that in this case, the two definitions of ¢, and Qf)ﬁw 4 from equations (2.69) and (2.70) converge toward the
R bydr. On the contrary, the unapproximated

formulation (“non-linear free-surface”, see the next section) retains the full expression: qﬁ’hy i = f:”"f (b= bo)dr .

This is obtained by selecting nonlinFreeSurf =4 in parameter file data. Regarding the surface potential:

Ro+n 1 Ro+n
¢ = / bodr =bsn with by = f/ bodr
R, nJR,

same (approximated) expressions: ¢, = [5°""' bodr and Phya = I

bs ~ b,(R,) is an excellent approximation (better than the usual numerical truncation, since generally |7| is smaller
than the vertical grid increment).

For the ocean, ¢s = gn and by = g is uniform. For the atmosphere, however, because of topographic effects, the
reference surface pressure R, = p, has large spatial variations that are responsible for significant by variations (from
0.8 to 1.2 [m?/kg]). For this reason, when uniformLin_PhiSurf =.FALSE. (parameter file dat a, namelist PARAMO1)
a non-uniform linear coefficient b, is used and computed (INI_LINEAR_PHISURF) according to the reference surface
pressure p,: bs = b,(R,) = cp/s'(po/PSOL)("’l)G,«ef (po), with Pg; the mean sea-level pressure.

2.10.2.2 Free surface effect on column total thickness (Non-linear free-surface)

The total thickness of the fluid column is 7y, f — Rfized = N + Ry — Ryizeq- In most applications, the free surface
displacements are small compared to the total thickness n < H, = R, — Rjfizcq. In the previous sections and in
older version of the model, the linearized free-surface approximation was made, assuming 7gurf — Rfizea ~ H,
when computing horizontal transports, either in the continuity equation or in tracer and momentum advection terms.
This approximation is dropped when using the non-linear free-surface formulation and the total thickness, including
the time varying part 7, is considered when computing horizontal transports. Implications for the barotropic part are

2.10. Variants on the Free Surface 55

http://mitgcm.org/lxr/ident/MITgcm?_i=nonlinFreeSurf
http://mitgcm.org/lxr/ident/MITgcm?_i=uniformLin_PhiSurf
https://github.com/MITgcm/MITgcm/blob/master/model/src/ini_linear_phisurf.F

MITgcm Documentation, Release 1.0

presented hereafter. In section Section 2.10.2.3 consequences for tracer conservation is briefly discussed (more details
can be found in Campin et al. (2004) [CAHMO04]) ; the general time-stepping is presented in section Section 2.10.2.4
with some limitations regarding the vertical resolution in section Section 2.10.2.5.

In the non-linear formulation, the continuous form of the model equations remains unchanged, except for the 2D
continuity equation (2.11) which is now integrated from R¢izeq(z,y) Up t0 rsyrf = Ro + 1

Ro+n
€550 = r'|T:TSwf +éep(P—E)=—-V}- / vdr + €4, (P — E)
Rfm:ed

Since 7 has a direct effect on the horizontal velocity (through V;®,,,,¢), this adds a non-linear term to the free surface
equation. Several options for the time discretization of this non-linear part can be considered, as detailed below.

If the column thickness is evaluated at time step n, and with implicit treatment of the surface potential gradient,
equations (2.64) and (2.65) become:

6fs'r]nJrl -V - At2(77n + R, — Rfiaced)vhbsnnle = 7]*

where

Ro+n"
N =epsn" — AtVy - / vidr + €puAi(P — E)"
Rfized

This method requires us to update the solver matrix at each time step.

Alternatively, the non-linear contribution can be evaluated fully explicitly:
efsnn—H — V- AtQ(RO — Rfmd)vhbsn"“ ="+ V- AtQ(nn)V}Lbsnn

This formulation allows one to keep the initial solver matrix unchanged though throughout the integration, since the
non-linear free surface only affects the RHS.

Finally, another option is a “linearized” formulation where the total column thickness appears only in the integral term
of the RHS (2.65) but not directly in the equation (2.64).

Those different options (see Table 2.1) have been tested and show little differences. However, we recommend the use
of the most precise method (nonlinFreeSurf =4) since the computation cost involved in the solver matrix update is
negligible.

Table 2.1: Non-linear free-surface flags

parameter value | description

-1 linear free-surface, restart from a pickup file
produced with #undef EXACT_CONSERYV code
Linear free-surface

Non-linear free-surface

nonlinFreeSurf

same as 4 but neglecting fé’)ﬁ" vdrin @},
same as 3 but do not update cg2d solver matrix
same as 2 but treat momentum as in Linear FS
do not use r* vertical coordinate (= default)
use r* vertical coordinate

same as 2 but without the contribution of the
slope of the coordinate in V&

select_rStar

—[o] = w|alo

2.10.2.3 Tracer conservation with non-linear free-surface

To ensure global tracer conservation (i.e., the total amount) as well as local conservation, the change in the surface
level thickness must be consistent with the way the continuity equation is integrated, both in the barotropic part (to
find n) and baroclinic part (to find w = 7).

56 Chapter 2. Discretization and Algorithm

http://mitgcm.org/lxr/ident/MITgcm?_i=nonlinFreeSurf
http://mitgcm.org/lxr/ident/MITgcm?_i=nonlinFreeSurf
http://mitgcm.org/lxr/ident/MITgcm?_i=select_rStar

MITgcm Documentation, Release 1.0

To illustrate this, consider the shallow water model, with a source of fresh water (P):
Oh+V - -hv =P
where h is the total thickness of the water column. To conserve the tracer § we have to discretize:
Ot (h0) + V - (hOV) = Pb,ain
Using the implicit (non-linear) free surface described above (Section 2.4) we have:
Rt = B — AtV - (B" V") + AtP

The discretized form of the tracer equation must adopt the same “form” in the computation of tracer fluxes, that is, the
same value of h, as used in the continuity equation:

RO = pr g — AtV - (R 0" V) 4 ALPO, i

The use of a 3 time-levels time-stepping scheme such as the Adams-Bashforth make the conservation sightly tricky.
The current implementation with the Adams-Bashforth time-stepping provides an exact local conservation and pre-
vents any drift in the global tracer content (Campin et al. (2004) [CAHMO04]). Compared to the linear free-surface
method, an additional step is required: the variation of the water column thickness (from A" to h™*+1) is not incorpo-
rated directly into the tracer equation. Instead, the model uses the Gy terms (first step) as in the linear free surface
formulation (with the “surface correction” turned “on”, see tracer section):

g _ (_v A (hn " vn—&-l) _ 7-,n+1 en) /hn

surf
Then, in a second step, the thickness variation (expansion/reduction) is taken into account:

hn

n+l _ gn
0 = 0" At

(G2 + P(Orin — 0)/1")

Note that with a simple forward time step (no Adams-Bashforth), these two formulations are equivalent, since (h"+! —
h") /At =P —V - (k") = P4t

surf

2.10.2.4 Time stepping implementation of the non-linear free-surface

The grid cell thickness was hold constant with the linear free-surface; with the non-linear free-surface, it is now
varying in time, at least at the surface level. This implies some modifications of the general algorithm described earlier
in sections Section 2.7 and Section 2.8.

A simplified version of the staggered in time, non-linear free-surface algorithm is detailed hereafter, and can be
compared to the equivalent linear free-surface case (eq. (2.36) to (2.46)) and can also be easily transposed to the
synchronous time-stepping case. Among the simplifications, salinity equation, implicit operator and detailed ellip-
tic equation are omitted. Surface forcing is explicitly written as fluxes of temperature, fresh water and momentum,
Q"2 prtl/2 Frorespectively. h™ and dh™ are the column and grid box thickness in r-coordinate.

Phya = / b(o"™, 8", r)dr (2.71)
Rn-1/2_ & ne1 =n—1/2\ . A@) _ 3 =zn-1/2 1 zn-3/2
2V Gg(arn) GYY = 5Gv T 5GY (2.72)
dhn—l = (n
V= A (Gg o /dh”‘l) RYNAL I 2.73)

2.10. Variants on the Free Surface 57

MITgcm Documentation, Release 1.0

— update model geometry : hFac(dh™)

nn+l/2: ,’77171/2 +AtPn+1/2 — ALV - /\—;n+1/2dhn

(2.74)
= Y2 APV ALY /(v - gAtVn”+1/2) dh"
VA = g ALVt (2.75)
W' =Bt ALPTVZ - ALY / G2 dpn (2.76)
Gy = Go(dh™, w12, 97 5 G2 = gcg - %G;H 2.77)
O =0 4 A (G g (P Gy — 0) Q) fan)

Two steps have been added to linear free-surface algorithm (eq. (2.36) to (2.46)): Firstly, the model “geometry” (here
the hFacC,W,S) is updated just before entering SOLVE_FOR_PRESSURE, using the current dh™ field. Secondly,
the vertically integrated continuity equation (2.76) has been added (exactConserv =.TRUE., in parameter file data,
namelist PARMO1) just before computing the vertical velocity, in subroutine INTEGR_CONTINUITY. Although this
equation might appear redundant with (2.74), the integrated column thickness 2" *! will be different from n"+1/2 +
H in the following cases:

* when Crank-Nicolson time-stepping is used (see Section 2.10.1).
* when filters are applied to the flow field, after (2.75), and alter the divergence of the flow.

* when the solver does not iterate until convergence; for example, because a too large residual target was set
(cg2dTargetResidual, parameter file dat a, namelist PARMO02).

In this staggered time-stepping algorithm, the momentum tendencies are computed using dh"™~! geometry factors
(2.72) and then rescaled in subroutine TIMESTEP, (2.73), similarly to tracer tendencies (see Section 2.10.2.3). The
tracers are stepped forward later, using the recently updated flow field v”**1/2 and the corresponding model geometry
dh™ to compute the tendencies (2.77); then the tendencies are rescaled by dh™ /dh"™*! to derive the new tracers values
(6,5)"*1 ((2.78), in subroutines CALC_GT, CALC_GS).

Note that the fresh-water input is added in a consistent way in the continuity equation and in the tracer equation, taking
into account the fresh-water temperature 6,.,;, .

Regarding the restart procedure, two 2D fields A"~ ! and (h™ — h"~!)/At in addition to the standard state variables
and tendencies ("2, vi—1/2, gn, gn GLT/2 Gy5") are stored in a “pickup” file. The model restarts reading

this pickup file, then updates the model geometry according to h”~!, and compute h™ and the vertical velocity before
starting the main calling sequence (eq. (2.71) to (2.78), FORWARD_STEP).

S/R INTEGR_CONTINUITY

Al — H, @ etaH (DYNVARS.h)
h™ — H, : etaHnm1 (SURFACE.h)
(hnt1 — hm) /At : dEtaHdt (SURFACE.h)

58 Chapter 2. Discretization and Algorithm

https://github.com/MITgcm/MITgcm/blob/master/model/src/solve_for_pressure.F
http://mitgcm.org/lxr/ident/MITgcm?_i=exactConserv
https://github.com/MITgcm/MITgcm/blob/master/model/src/integr_continuity.F
http://mitgcm.org/lxr/ident/MITgcm?_i=cg2dTargetResidual
https://github.com/MITgcm/MITgcm/blob/master/model/src/timestep.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/calc_gt.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/calc_gs.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/forward_step.F
http://mitgcm.org/lxr/ident/MITgcm?_i=etaH
https://github.com/MITgcm/MITgcm/blob/master/model/inc/DYNVARS.h
http://mitgcm.org/lxr/ident/MITgcm?_i=etaHnm1
https://github.com/MITgcm/MITgcm/blob/master/model/inc/SURFACE.h
http://mitgcm.org/lxr/ident/MITgcm?_i=dEtaHdt
https://github.com/MITgcm/MITgcm/blob/master/model/inc/SURFACE.h

MITgcm Documentation, Release 1.0

2.10.2.5 Non-linear free-surface and vertical resolution

When the amplitude of the free-surface variations becomes as large as the vertical resolution near the surface, the
surface layer thickness can decrease to nearly zero or can even vanish completely. This later possibility has not been
implemented, and a minimum relative thickness is imposed (hFacInf, parameter file data, namelist PARMO1) to
prevent numerical instabilities caused by very thin surface level.

A better alternative to the vanishing level problem relies on a different vertical coordinate »* : The time variation of
the total column thickness becomes part of the r* coordinate motion, as in a ¢, o, model, but the fixed part related
to topography is treated as in a height or pressure coordinate model. A complete description is given in Adcroft and
Campin (2004) [ACO4].

The time-stepping implementation of the * coordinate is identical to the non-linear free-surface in r coordinate, and
differences appear only in the spacial discretization.

2.11 Spatial discretization of the dynamical equations

Spatial discretization is carried out using the finite volume method. This amounts to a grid-point method (namely
second-order centered finite difference) in the fluid interior but allows boundaries to intersect a regular grid allowing
a more accurate representation of the position of the boundary. We treat the horizontal and vertical directions as
separable and differently.

2.11.1 The finite volume method: finite volumes versus finite difference

The finite volume method is used to discretize the equations in space. The expression “finite volume” actually has two
meanings; one is the method of embedded or intersecting boundaries (shaved or lopped cells in our terminology) and
the other is non-linear interpolation methods that can deal with non-smooth solutions such as shocks (i.e. flux limiters
for advection). Both make use of the integral form of the conservation laws to which the weak solution is a solution
on each finite volume of (sub-domain). The weak solution can be constructed out of piece-wise constant elements or
be differentiable. The differentiable equations can not be satisfied by piece-wise constant functions.

As an example, the 1-D constant coefficient advection-diffusion equation:
O + 0p(ub — K0,0) =0
can be discretized by integrating over finite sub-domains, i.e. the lengths Ax;:
Axdf+ 0;(F) =0

is exact if f(x) is piece-wise constant over the interval Az; or more generally if §; is defined as the average over the
interval Ax;.

The flux, F;_; /2, must be approximated:

— K
F=uf——0,0
Az, '
and this is where truncation errors can enter the solution. The method for obtaining 6 is unspecified and a wide range
of possibilities exist including centered and upwind interpolation, polynomial fits based on the the volume average
definitions of quantities and non-linear interpolation such as flux-limiters.

Choosing simple centered second-order interpolation and differencing recovers the same ODE’s resulting from finite
differencing for the interior of a fluid. Differences arise at boundaries where a boundary is not positioned on a regular
or smoothly varying grid. This method is used to represent the topography using lopped cell, see Adcroft et al. (1997)
[AHM97]. Subtle difference also appear in more than one dimension away from boundaries. This happens because
each direction is discretized independently in the finite difference method while the integrating over finite volume
implicitly treats all directions simultaneously.

2.11. Spatial discretization of the dynamical equations 59

http://mitgcm.org/lxr/ident/MITgcm?_i=hFacInf

MITgcm Documentation, Release 1.0

2.11.2 C grid staggering of variables

The basic algorithm employed for stepping forward the momentum equations is based on retaining non-divergence of
the flow at all times. This is most naturally done if the components of flow are staggered in space in the form of an
Arakawa C grid (Arakawa and Lamb, 1977 [AL77]).

Figure 2.5 shows the components of flow (u,v,w) staggered in space such that the zonal component falls on the
interface between continuity cells in the zonal direction. Similarly for the meridional and vertical directions. The
continuity cell is synonymous with tracer cells (they are one and the same).

Figure 2.5: Three dimensional staggering of velocity components. This facilitates the natural discretization of the
continuity and tracer equations.

2.11.3 Grid initialization and data

Initialization of grid data is controlled by subroutine INI_GRID which in calls INI_VERTICAL_GRID to
initialize the vertical grid, and then either of INI_CARTESIAN_GRID, INI_SPHERICAL_POLAR_GRID or
INI_CURVILINEAR_GRID to initialize the horizontal grid for cartesian, spherical-polar or curvilinear coordinates
respectively.

The reciprocals of all grid quantities are pre-calculated and this is done in subroutine INI_MASKS_ETC which is
called later by subroutine INITIALISE_FIXED.

All grid descriptors are global arrays and stored in common blocks in GRID.h and a generally declared as _RS.

2.11.4 Horizontal grid

The model domain is decomposed into tiles and within each tile a quasi-regular grid is used. A tile is the ba-
sic unit of domain decomposition for parallelization but may be used whether parallelized or not; see section
[sec:domain_decomposition] for more details. Although the tiles may be patched together in an unstructured manner
(i.e. irregular or non-tessilating pattern), the interior of tiles is a structured grid of quadrilateral cells. The horizon-
tal coordinate system is orthogonal curvilinear meaning we can not necessarily treat the two horizontal directions as
separable. Instead, each cell in the horizontal grid is described by the length of it’s sides and it’s area.

The grid information is quite general and describes any of the available coordinates systems, cartesian, spherical-
polar or curvilinear. All that is necessary to distinguish between the coordinate systems is to initialize the grid data
(descriptors) appropriately.

60 Chapter 2. Discretization and Algorithm

https://github.com/MITgcm/MITgcm/blob/master/model/src/ini_grid.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/ini_vertical_grid.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/ini_cartesian_grid.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/ini_spherical_polar_grid.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/ini_curvilinear_grid.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/ini_masks_etc.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/initialise_fixed.F
https://github.com/MITgcm/MITgcm/blob/master/model/inc/GRID.h

MITgcm Documentation, Release 1.0

In the following, we refer to the orientation of quantities on the computational grid using geographic terminology
such as points of the compass. This is purely for convenience but should not be confused with the actual geographic
orientation of model quantities.

|
|
-
|
|
|
|
<
|
|
|
JE
1
|
|
|
|
I
I
I
|
|
I

Figure 2.6: Staggering of horizontal grid descriptors (lengths and areas). The grid lines indicate the tracer cell bound-
aries and are the reference grid for all panels. a) The area of a tracer cell, A, is bordered by the lengths Az, and Ay,,.
b) The area of a vorticity cell, A¢, is bordered by the lengths Az and Ay,. c) The area of a u cell, A,,, is bordered by
the lengths Az, and Ayy. d) The area of a v cell, Ay, is bordered by the lengths Az ¢ and Ay,,.

Figure 2.6 (a) shows the tracer cell (synonymous with the continuity cell). The length of the southern edge, Az,
western edge, Ay, and surface area, A, presented in the vertical are stored in arrays dxG, dyG and rA. The “g” suffix
indicates that the lengths are along the defining grid boundaries. The “c” suffix associates the quantity with the cell
centers. The quantities are staggered in space and the indexing is such that dxG(i,j) is positioned to the south of rA(i,j)
and dyG(i,j) positioned to the west.

Figure 2.6 (b) shows the vorticity cell. The length of the southern edge, Ax., western edge, Ay, and surface area, A,
presented in the vertical are stored in arrays dxC, dyC and rAz. The “z” suffix indicates that the lengths are measured
between the cell centers and the “(” suffix associates points with the vorticity points. The quantities are staggered in

space and the indexing is such that dxC(i,j) is positioned to the north of rAz(i,j) and dyC(i,j) positioned to the east.

Figure 2.6 (c) shows the “u” or western (w) cell. The length of the southern edge, Ax,, eastern edge, Ay and surface
area, A,,, presented in the vertical are stored in arrays dxV, dyF and rAw. The “v” suffix indicates that the length is
measured between the v-points, the “f” suffix indicates that the length is measured between the (tracer) cell faces and
the “w” suffix associates points with the u-points (w stands for west). The quantities are staggered in space and the

indexing is such that dxV(i,j) is positioned to the south of rAw(i,j) and dyF(i,j) positioned to the east.

Figure 2.6 (d) shows the “v” or southern (s) cell. The length of the northern edge, Ax y, western edge, Ay, and surface
area, A, presented in the vertical are stored in arrays dxF, dyU and rAs. The “u” suffix indicates that the length is
measured between the u-points, the “f” suffix indicates that the length is measured between the (tracer) cell faces and

2.11. Spatial discretization of the dynamical equations 61

http://mitgcm.org/lxr/ident/MITgcm?_i=dxG
http://mitgcm.org/lxr/ident/MITgcm?_i=dyG
http://mitgcm.org/lxr/ident/MITgcm?_i=rA
http://mitgcm.org/lxr/ident/MITgcm?_i=dxC
http://mitgcm.org/lxr/ident/MITgcm?_i=dyC
http://mitgcm.org/lxr/ident/MITgcm?_i=rAz
http://mitgcm.org/lxr/ident/MITgcm?_i=dxV
http://mitgcm.org/lxr/ident/MITgcm?_i=dyF
http://mitgcm.org/lxr/ident/MITgcm?_i=rAw
http://mitgcm.org/lxr/ident/MITgcm?_i=dxF
http://mitgcm.org/lxr/ident/MITgcm?_i=dyU
http://mitgcm.org/lxr/ident/MITgcm?_i=rAs

MITgcm Documentation, Release 1.0

the “s” suffix associates points with the v-points (s stands for south). The quantities are staggered in space and the
indexing is such that dxF(i,j) is positioned to the north of rAs(i,j) and dyU(i,j) positioned to the west.

S/R INI_CARTESIAN_GRID , INI_SPHERICAL_POLAR_GRID , INI_CURVILINEAR_GRID

Ac, Ac, Ay, Ag 1 1A, TAZ, TAW, rAs (GRID.h)
Axg, Ay, : dxG, dyG (GRID.h)
Az, Ay, : dxC, dyC (GRID.h)
Az, Ayy : dxF, dyF (GRID.h)
Ax,, Ay, : dxV, dyU (GRID.h)

2.11.4.1 Reciprocals of horizontal grid descriptors
Lengths and areas appear in the denominator of expressions as much as in the numerator. For efficiency and portability,
we pre-calculate the reciprocal of the horizontal grid quantities so that in-line divisions can be avoided.

For each grid descriptor (array) there is a reciprocal named using the prefix recip_. This doubles the amount of
storage in GRID.h but they are all only 2-D descriptors.

S/R INI_MASKS_ETC
AL Agl, At AL recip_rA, recip_rAz, recip_rAw, recip_rAs (GRID.h)
Azt Ayt recip_dxG, recip_dyG (GRID.h)
Azt Ayt recip_dxC, recip_dyC (GRID.h)
Ax;l, Ay;l : recip_dxF, recip_dyF (GRID.h)
Azt Ayt recip_dxV, recip_dyU (GRID.h)

2.11.4.2 Cartesian coordinates

Cartesian coordinates are selected when the logical flag usingCartesianGrid in namelist PARMO04 is set to true. The
grid spacing can be set to uniform via scalars dXspacing and dYspacing in namelist PARMO4 or to variable resolution
by the vectors DELX and DELY. Units are normally meters. Non-dimensional coordinates can be used by interpreting
the gravitational constant as the Rayleigh number.

2.11.4.3 Spherical-polar coordinates

Spherical coordinates are selected when the logical flag usingSphericalPolarGrid in namelist PARMO04 is set to true.
The grid spacing can be set to uniform via scalars dXspacing and dYspacing in namelist PARM04 or to variable
resolution by the vectors DELX and DELY. Units of these namelist variables are alway degrees. The horizontal grid
descriptors are calculated from these namelist variables have units of meters.

2.11.4.4 Curvilinear coordinates

Curvilinear coordinates are selected when the logical flag usingCurvilinearGrid in namelist PARMO4 is set to true.
The grid spacing can not be set via the namelist. Instead, the grid descriptors are read from data files, one for each
descriptor. As for other grids, the horizontal grid descriptors have units of meters.

62 Chapter 2. Discretization and Algorithm

http://mitgcm.org/lxr/ident/MITgcm?_i=rA
http://mitgcm.org/lxr/ident/MITgcm?_i=rAz
http://mitgcm.org/lxr/ident/MITgcm?_i=rAw
http://mitgcm.org/lxr/ident/MITgcm?_i=rAs
https://github.com/MITgcm/MITgcm/blob/master/model/inc/GRID.h
http://mitgcm.org/lxr/ident/MITgcm?_i=dxG
http://mitgcm.org/lxr/ident/MITgcm?_i=dyG
https://github.com/MITgcm/MITgcm/blob/master/model/inc/GRID.h
http://mitgcm.org/lxr/ident/MITgcm?_i=dxC
http://mitgcm.org/lxr/ident/MITgcm?_i=dyC
https://github.com/MITgcm/MITgcm/blob/master/model/inc/GRID.h
http://mitgcm.org/lxr/ident/MITgcm?_i=dxF
http://mitgcm.org/lxr/ident/MITgcm?_i=dyF
https://github.com/MITgcm/MITgcm/blob/master/model/inc/GRID.h
http://mitgcm.org/lxr/ident/MITgcm?_i=dxV
http://mitgcm.org/lxr/ident/MITgcm?_i=dyU
https://github.com/MITgcm/MITgcm/blob/master/model/inc/GRID.h
https://github.com/MITgcm/MITgcm/blob/master/model/inc/GRID.h
http://mitgcm.org/lxr/ident/MITgcm?_i=recip_rA
http://mitgcm.org/lxr/ident/MITgcm?_i=recip_rAz
http://mitgcm.org/lxr/ident/MITgcm?_i=recip_rAw
http://mitgcm.org/lxr/ident/MITgcm?_i=recip_rAs
https://github.com/MITgcm/MITgcm/blob/master/model/inc/GRID.h
http://mitgcm.org/lxr/ident/MITgcm?_i=recip_dxG
http://mitgcm.org/lxr/ident/MITgcm?_i=recip_dyG
https://github.com/MITgcm/MITgcm/blob/master/model/inc/GRID.h
http://mitgcm.org/lxr/ident/MITgcm?_i=recip_dxC
http://mitgcm.org/lxr/ident/MITgcm?_i=recip_dyC
https://github.com/MITgcm/MITgcm/blob/master/model/inc/GRID.h
http://mitgcm.org/lxr/ident/MITgcm?_i=recip_dxF
http://mitgcm.org/lxr/ident/MITgcm?_i=recip_dyF
https://github.com/MITgcm/MITgcm/blob/master/model/inc/GRID.h
http://mitgcm.org/lxr/ident/MITgcm?_i=recip_dxV
http://mitgcm.org/lxr/ident/MITgcm?_i=recip_dyU
https://github.com/MITgcm/MITgcm/blob/master/model/inc/GRID.h
http://mitgcm.org/lxr/ident/MITgcm?_i=usingCartesianGrid
http://mitgcm.org/lxr/ident/MITgcm?_i=dXspacing
http://mitgcm.org/lxr/ident/MITgcm?_i=dYspacing
http://mitgcm.org/lxr/ident/MITgcm?_i=DELX
http://mitgcm.org/lxr/ident/MITgcm?_i=DELY
http://mitgcm.org/lxr/ident/MITgcm?_i=usingSphericalPolarGrid
http://mitgcm.org/lxr/ident/MITgcm?_i=dXspacing
http://mitgcm.org/lxr/ident/MITgcm?_i=dYspacing
http://mitgcm.org/lxr/ident/MITgcm?_i=DELX
http://mitgcm.org/lxr/ident/MITgcm?_i=DELY
http://mitgcm.org/lxr/ident/MITgcm?_i=usingCurvilinearGrid

MITgcm Documentation, Release 1.0

2.11.5 Vertical grid

a) W b) W
S e Ar
W
Ar W Ar
C C
,,,,{97777 ,,,,O,,,,
W
‘V‘V’
,,,,{97777 ,,,,O,,,,

~
o)
<
~
-

<
<
<
<

Figure 2.7: Two versions of the vertical grid. a) The cell centered approach where the interface depths are specified
and the tracer points centered in between the interfaces. b) The interface centered approach where tracer levels are
specified and the w-interfaces are centered in between.

As for the horizontal grid, we use the suffixes “c” and “f” to indicates faces and centers. Figure 2.7 (a) shows the default
vertical grid used by the model. Ary is the difference in r (vertical coordinate) between the faces (i.e. Ary = —dyr
where the minus sign appears due to the convention that the surface layer has index k& = 1.).

The vertical grid is calculated in subroutine INI_VERTICAL_GRID and specified via the vector delR in namelist
PARMO4. The units of “r” are either meters or Pascals depending on the isomorphism being used which in turn is
dependent only on the choice of equation of state.

There are alternative namelist vectors delZ and delP which dictate whether z- or p- coordinates are to be used but we
intend to phase this out since they are redundant.

The reciprocals Ar;l and Ar_ ! are pre-calculated (also in subroutine INI_VERTICAL_GRID). All vertical grid
descriptors are stored in common blocks in GRID.h.

The above grid Figure 2.7 (a) is known as the cell centered approach because the tracer points are at cell centers; the
cell centers are mid-way between the cell interfaces. This discretization is selected when the thickness of the levels
are provided (delR, parameter file data, namelist PARMO04) An alternative, the vertex or interface centered approach,
is shown in Figure 2.7 (b). Here, the interior interfaces are positioned mid-way between the tracer nodes (no longer
cell centers). This approach is formally more accurate for evaluation of hydrostatic pressure and vertical advection but
historically the cell centered approach has been used. An alternative form of subroutine INI_VERTICAL_GRID is
used to select the interface centered approach This form requires to specify Nr+ 1 vertical distances delRc (parameter

2.11. Spatial discretization of the dynamical equations 63

https://github.com/MITgcm/MITgcm/blob/master/model/src/ini_vertical_grid.F
http://mitgcm.org/lxr/ident/MITgcm?_i=delR
http://mitgcm.org/lxr/ident/MITgcm?_i=delZ
http://mitgcm.org/lxr/ident/MITgcm?_i=delP
https://github.com/MITgcm/MITgcm/blob/master/model/src/ini_vertical_grid.F
https://github.com/MITgcm/MITgcm/blob/master/model/inc/GRID.h
http://mitgcm.org/lxr/ident/MITgcm?_i=delR
https://github.com/MITgcm/MITgcm/blob/master/model/src/ini_vertical_grid.F
http://mitgcm.org/lxr/ident/MITgcm?_i=delRc

MITgcm Documentation, Release 1.0

file data, namelist PARMO04, e.g. ideal_2D_oce/input/data) corresponding to surface to center, Nr—1 center to center,
and center to bottom distances.

S/R INI_VERTICAL_GRID

Arg, Ar. : drF, drC (GRID.h)
Arf_l, Ar; 1 recip_drF, recip_drC (GRID.h)

2.11.6 Topography: partially filled cells

Adcroft et al. (1997) [AHM?97] presented two alternatives to the step-wise finite difference representation of topogra-
phy. The method is known to the engineering community as intersecting boundary method. It involves allowing the
boundary to intersect a grid of cells thereby modifying the shape of those cells intersected. We suggested allowing the
topography to take on a piece-wise linear representation (shaved cells) or a simpler piecewise constant representation
(partial step). Both show dramatic improvements in solution compared to the traditional full step representation, the
piece-wise linear being the best. However, the storage requirements are excessive so the simpler piece-wise constant
or partial-step method is all that is currently supported.

b,
h Ar

Ar

Figure 2.8: A schematic of the x-r plane showing the location of the non-dimensional fractions h. and h,, . The
physical thickness of a tracer cell is given by h.(i, j, k) Ar¢(k) and the physical thickness of the open side is given by
haw (3, j, k) Arp(k) .

Figure 2.8 shows a schematic of the x-r plane indicating how the thickness of a level is determined at tracer and u
points. The physical thickness of a tracer cell is given by h.(i, j, k) Ar;(k) and the physical thickness of the open
side is given by hy, (i, 7, k) Ar (k). Three 3-D descriptors A, h,, and h, are used to describe the geometry: hFacC,
hFacW and hFacS respectively. These are calculated in subroutine INI_ MASKS_ETC along with there reciprocals
recip_hFacC, recip_hFacW and recip_hFacS.

The non-dimensional fractions (or h-facs as we call them) are calculated from the model depth array and then processed
to avoid tiny volumes. The rule is that if a fraction is less than hFacMin then it is rounded to the nearer of 0 or hFacMin
or if the physical thickness is less than hFacMinDr then it is similarly rounded. The larger of the two methods is used
when there is a conflict. By setting hFacMinDr equal to or larger than the thinnest nominal layers, min (Azy), but

64 Chapter 2. Discretization and Algorithm

https://github.com/MITgcm/MITgcm/blob/master/verification/ideal_2D_oce/input/data
http://mitgcm.org/lxr/ident/MITgcm?_i=drF
http://mitgcm.org/lxr/ident/MITgcm?_i=drC
https://github.com/MITgcm/MITgcm/blob/master/model/inc/GRID.h
http://mitgcm.org/lxr/ident/MITgcm?_i=recip_drF
http://mitgcm.org/lxr/ident/MITgcm?_i=recip_drC
https://github.com/MITgcm/MITgcm/blob/master/model/inc/GRID.h
http://mitgcm.org/lxr/ident/MITgcm?_i=hFacC
http://mitgcm.org/lxr/ident/MITgcm?_i=hFacW
http://mitgcm.org/lxr/ident/MITgcm?_i=hFacS
https://github.com/MITgcm/MITgcm/blob/master/model/src/ini_masks_etc.F
http://mitgcm.org/lxr/ident/MITgcm?_i=recip_hFacC
http://mitgcm.org/lxr/ident/MITgcm?_i=recip_hFacW
http://mitgcm.org/lxr/ident/MITgcm?_i=recip_hFacS
http://mitgcm.org/lxr/ident/MITgcm?_i=hFacMin
http://mitgcm.org/lxr/ident/MITgcm?_i=hFacMin
http://mitgcm.org/lxr/ident/MITgcm?_i=hFacMinDr
http://mitgcm.org/lxr/ident/MITgcm?_i=hFacMinDr

MITgcm Documentation, Release 1.0

setting hFacMin to some small fraction then the model will only lop thick layers but retain stability based on the
thinnest unlopped thickness; min (Azy, hFacMinDr).

S/R filelink:INI_MASKS_ETC

he, ha, hs : hFacC, hFacW, hFacS (GRID.h)
ht pt h;l : recip_hFacC, recip_hFacW, recip_hFacS (GRID.h)

c w

2.12 Continuity and horizontal pressure gradient term

The core algorithm is based on the “C grid” discretization of the continuity equation which can be summarized as:

0

€nh o 1

R .d’ — p o4
dut 0% Gy L” T A 1P = G = K 0 278)
1 oo €Enh ;o 1 /
O + A C(Sj or n+ E@@m =G, Tycfsjq’h (2.79)
O+~ 5,8) = enn Gy + B — —— 6, (2.80)
€Enh LW Ar. kPpn | = €nhbuw Ar, k*h :
0i AygArghyu + 6;AxgArphsv + 0 Acw = Aok (P — E)r—g (2.81)

where the continuity equation has been most naturally discretized by staggering the three components of velocity as
shown in Figure 2.5. The grid lengths Ax. and Ay, are the lengths between tracer points (cell centers). The grid
lengths Az, Ay, are the grid lengths between cell corners. Ary and Ar. are the distance (in units of r) between
level interfaces (w-level) and level centers (tracer level). The surface area presented in the vertical is denoted A.. The
factors h,, and hg are non-dimensional fractions (between 0 and 1) that represent the fraction cell depth that is “open”
for fluid flow.

The last equation, the discrete continuity equation, can be summed in the vertical to yield the free-surface equation:

Acdn +6; Y AygArphyu+6; Y AzgArsheo = Ao(P — E)y—g (2.82)
k k

The source term P — E on the rhs of continuity accounts for the local addition of volume due to excess precipitation
and run-off over evaporation and only enters the top-level of the ocean model.

2.13 Hydrostatic balance

The vertical momentum equation has the hydrostatic or quasi-hydrostatic balance on the right hand side. This dis-
cretization guarantees that the conversion of potential to kinetic energy as derived from the buoyancy equation exactly
matches the form derived from the pressure gradient terms when forming the kinetic energy equation.

In the ocean, using z-coordinates, the hydrostatic balance terms are discretized:

2.12. Continuity and horizontal pressure gradient term 65

http://mitgcm.org/lxr/ident/MITgcm?_i=hFacMin
http://mitgcm.org/lxr/ident/MITgcm?_i=hFacC
http://mitgcm.org/lxr/ident/MITgcm?_i=hFacW
http://mitgcm.org/lxr/ident/MITgcm?_i=hFacS
https://github.com/MITgcm/MITgcm/blob/master/model/inc/GRID.h
http://mitgcm.org/lxr/ident/MITgcm?_i=recip_hFacC
http://mitgcm.org/lxr/ident/MITgcm?_i=recip_hFacW
http://mitgcm.org/lxr/ident/MITgcm?_i=recip_hFacS
https://github.com/MITgcm/MITgcm/blob/master/model/inc/GRID.h

MITgcm Documentation, Release 1.0

k1
enndsw + g’ + 0P = . (2.83)

In the atmosphere, using p-coordinates, hydrostatic balance is discretized:

o1
e~

A 0E®h =0 (2.84)

where AII is the difference in Exner function between the pressure points. The non-hydrostatic equations are not
available in the atmosphere.

The difference in approach between ocean and atmosphere occurs because of the direct use of the ideal gas equation
in forming the potential energy conversion term aw. Because of the different representation of hydrostatic balance
between ocean and atmosphere there is no elegant way to represent both systems using an arbitrary coordinate.

The integration for hydrostatic pressure is made in the positive r direction (increasing k-index). For the ocean, this is
from the free-surface down and for the atmosphere this is from the ground up.

The calculations are made in the subroutine CALC_PHI_HYD. Inside this routine, one of other of the atmo-
spheric/oceanic form is selected based on the string variable buoyancyRelation.

2.14 Flux-form momentum equations

The original finite volume model was based on the Eulerian flux form momentum equations. This is the default though
the vector invariant form is optionally available (and recommended in some cases).

The “G’s” (our colloquial name for all terms on rhs!) are broken into the various advective, Coriolis, horizontal
dissipation, vertical dissipation and metric forces:

Gu _ szv + GZOT + GZ—diss + Gz—diss 4 G;netric + Gﬁh—metric (285)
Gv — ngv + Ggor + Gg—diss + Gg—diss 4 G;netric 4 G;Lh—metric (286)
Gw _ G&dv =+ Ggyr =+ Gz—diss + G'g}—diss + G;r:}zetric + G;L)h—'rnetric (287)

In the hydrostatic limit, G,, = 0 and €, = 0, reducing the vertical momentum to hydrostatic balance.

These terms are calculated in routines called from subroutine MOM_FLUXFORM and collected into the global arrays
¢U, gV, and gW.

S/R MOM_FLUXFORM

G, : gU (DYNVARS.h)
G, : gV (DYNVARS.h)
Guw : eW (NH_VARS.h)

66 Chapter 2. Discretization and Algorithm

https://github.com/MITgcm/MITgcm/blob/master/model/src/calc_phi_hyd.F
http://mitgcm.org/lxr/ident/MITgcm?_i=buoyancyRelation
https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_fluxform/mom_fluxform.F
http://mitgcm.org/lxr/ident/MITgcm?_i=gU
http://mitgcm.org/lxr/ident/MITgcm?_i=gV
http://mitgcm.org/lxr/ident/MITgcm?_i=gW
http://mitgcm.org/lxr/ident/MITgcm?_i=gU
https://github.com/MITgcm/MITgcm/blob/master/model/inc/DYNVARS.h
http://mitgcm.org/lxr/ident/MITgcm?_i=gV
https://github.com/MITgcm/MITgcm/blob/master/model/inc/DYNVARS.h
http://mitgcm.org/lxr/ident/MITgcm?_i=gW
https://github.com/MITgcm/MITgcm/blob/master/model/inc/NH_VARS.h

MITgcm Documentation, Release 1.0

2.14.1 Advection of momentum

The advective operator is second order accurate in space:

AwArhy, Gt = 50T + 6,V + 6, 0 (2.88)

AN ph GH = 5075 + 6,V + 6, o (2.89)
adv 7R k- TRk

AAr Gy =60,U @ + 6,V w! + 0,W w (2.90)

and because of the flux form does not contribute to the global budget of linear momentum. The quantities U, V' and
W are volume fluxes defined:

U = Ay,Arghyu (2.91)
V = Az Arphgv (2.92)
W = Aw (2.93)

The advection of momentum takes the same form as the advection of tracers but by a translated advective flow.
Consequently, the conservation of second moments, derived for tracers later, applies to u? and v? and w? so that
advection of momentum correctly conserves kinetic energy.

S/R MOM_U_ADV_UU, MOM_U_ADV_VU, MOM_U_ADV_WU
uu, vu, wu : fZon, fMer, fVerUkp (local to MOM_FLUXFORM.F)

S/RMOM_V_ADV_UV,MOM_V_ADV_VV,MOM_V_ADV_WV
uv, vv, wv : Zon, fMer, fVerVkp (local to MOM_FLUXFORM.F)

2.14.2 Coriolis terms

The “pure C grid” Coriolis terms (i.e. in absence of C-D scheme) are discretized:

AwArh,GSo = FANT the — enn f' AT ph T (2.94)

AN ph GO = —fAAr (2.95)

2.14. Flux-form momentum equations 67

http://mitgcm.org/lxr/ident/MITgcm?_i=fZon
http://mitgcm.org/lxr/ident/MITgcm?_i=fMer
http://mitgcm.org/lxr/ident/MITgcm?_i=fVerUkp
https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_fluxform/mom_fluxform.F
http://mitgcm.org/lxr/ident/MITgcm?_i=fZon
http://mitgcm.org/lxr/ident/MITgcm?_i=fMer
http://mitgcm.org/lxr/ident/MITgcm?_i=fVerVkp
https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_fluxform/mom_fluxform.F

MITgcm Documentation, Release 1.0

_— &
AAT.GS = e f1ANT ph T (2.96)
where the Coriolis parameters f and f’ are defined:
f= 2Qsing
= 2Qcosy

where ¢ is geographic latitude when using spherical geometry, otherwise the 3-plane definition is used:

f: fo+5y
= 0

This discretization globally conserves kinetic energy. It should be noted that despite the use of this discretization in
former publications, all calculations to date have used the following different discretization:

Gg’or — fuﬁji _ enhf;wik (297)
GgOT — 7fvﬂzj (298)
Ggor _ Gnhf:ﬂﬁik (2.99)

where the subscripts on f and f’ indicate evaluation of the Coriolis parameters at the appropriate points in space.
The above discretization does not conserve anything, especially energy, but for historical reasons is the default for the
code. A flag controls this discretization: set run-time logical useEnergyConservingCoriolis to .TRUE. which otherwise
defaults to .FALSE..

S/R CD_CODE_SCHEME, MOM_U_CORIOLIS, MOM_V_CORIOLIS
G, GEr : cF (local to MOM_FLUXFORM.F)

2.14.3 Curvature metric terms

The most commonly used coordinate system on the sphere is the geographic system (A,). The curvilinear nature
of these coordinates on the sphere lead to some “metric” terms in the component momentum equations. Under the
thin-atmosphere and hydrostatic approximations these terms are discretized:

ApArphy, Getric — % tan g A AT hw (2.100)
a 7
AT ph G = — — tan g A Ar phoTr! (2.101)
a
GZLetm'c =0 (2102)

68 Chapter 2. Discretization and Algorithm

http://mitgcm.org/lxr/ident/MITgcm?_i=useEnergyConservingCoriolis
http://mitgcm.org/lxr/ident/MITgcm?_i=cF
https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_fluxform/mom_fluxform.F

MITgcm Documentation, Release 1.0

where a is the radius of the planet (sphericity is assumed) or the radial distance of the particle (i.e. a function of
height). It is easy to see that this discretization satisfies all the properties of the discrete Coriolis terms since the metric
factor ¥ tan ¢ can be viewed as a modification of the vertical Coriolis parameter: f — f + ¢ tan .

However, as for the Coriolis terms, a non-energy conserving form has exclusively been used to date:

el
: uv
Gumetrzc — tan)
a
i
; ur’u
G;r)netmc — tan)

where tan ¢ is evaluated at the v and v points respectively.

S/R MOM_U_METRIC_SPHERE, MOM_V_METRIC_SPHERE
Gmetric gmetric . ;T (local to MOM_FLUXFORM.F)

2.14.4 Non-hydrostatic metric terms

For the non-hydrostatic equations, dropping the thin-atmosphere approximation re-introduces metric terms involving
w which are required to conserve angular momentum:

%

ik
AwA,r,fhwGZLetric _ _u w ACATfhc (2103)
a
e
.ASAT'thGTetMC - _ v ;U ACA’I”th (2104)
N A ’
ACA’I"CGZLetMC — p AcArfhc (2105)

Because we are always consistent, even if consistently wrong, we have, in the past, used a different discretization in
the model which is:

. u__;
Gumetmc — —*U)Zk
a
. v
GZ’Letmc — _7w‘]k‘
a
; 1, .2 2
Ggetmc — 7(@1}6 + @]k)

S/R MOM_U_METRIC_NH, MOM_V_METRIC_NH
Gmetric _gmetric . ;T (local to MOM_FLUXFORM.F)

2.14.5 Lateral dissipation

Historically, we have represented the SGS Reynolds stresses as simply down gradient momentum fluxes, ignoring
constraints on the stress tensor such as symmetry.

2.14. Flux-form momentum equations 69

http://mitgcm.org/lxr/ident/MITgcm?_i=mT
https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_fluxform/mom_fluxform.F
http://mitgcm.org/lxr/ident/MITgcm?_i=mT
https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_fluxform/mom_fluxform.F

MITgcm Documentation, Release 1.0

Ay Arphy, GR=455 = 5, Ay Arphemin + 6;Az,ArpheTio (2.106)

ASAr g GRY58 = 5, Ay, ArpheTor + 0;A7 AT pheTao (2.107)

The lateral viscous stresses are discretized:

1 1

T = AhCnA(Sﬁ)Tij&'U - A4C11A2(<P)A7xf5iv2u (2.108)
1 1 9

T2 = AhC12A(</J)E5ju — Aycranz(p) Ay 0;Vou (2.109)
1 1 9

T21 = AMJQlA((p)E(S,‘U — A4821A2 ((p) Az 6N v (2.110)
1 1 9

T22 = AhCQQA((,D)Tyf(SjU — A4022A2 (@)A—yféjv v (2111)

where the non-dimensional factors cjman (), {I,m,n} € {1,2} define the “cosine” scaling with latitude which can
be applied in various ad-hoc ways. For instance, c11a = c21a = (cos 90)3/ 2, ¢19A = Coan = 1 would represent the
anisotropic cosine scaling typically used on the “lat-lon” grid for Laplacian viscosity.

It should be noted that despite the ad-hoc nature of the scaling, some scaling must be done since on a lat-lon grid the

converging meridians make it very unlikely that a stable viscosity parameter exists across the entire model domain.
The Laplacian viscosity coefficient, A (viscAh), has units of m2s~!

(viscA4), has units of m*s—1.

. The bi-harmonic viscosity coefficient, Ay

S/R MOM_U_XVISCFLUX, MOM_U_YVISCFLUX
T11, T12 : VF, v4F (local to MOM_FLUXFORM.F)

S/R MOM_V_XVISCFLUX, MOM_V_YVISCFLUX
To1, Too © VF, v4F (local to MOM_FLUXFORM.F)

Two types of lateral boundary condition exist for the lateral viscous terms, no-slip and free-slip.

The free-slip condition is most convenient to code since it is equivalent to zero-stress on boundaries. Simple masking
of the stress components sets them to zero. The fractional open stress is properly handled using the lopped cells.

The no-slip condition defines the normal gradient of a tangential flow such that the flow is zero on the boundary. Rather
than modify the stresses by using complicated functions of the masks and “ghost” points (see Adcroft and Marshall
(1998) [AM9S8]) we add the boundary stresses as an additional source term in cells next to solid boundaries. This has
the advantage of being able to cope with “thin walls” and also makes the interior stress calculation (code) independent
of the boundary conditions. The “body” force takes the form:

70 Chapter 2. Discretization and Algorithm

http://mitgcm.org/lxr/ident/MITgcm?_i=viscAh
http://mitgcm.org/lxr/ident/MITgcm?_i=viscA4
http://mitgcm.org/lxr/ident/MITgcm?_i=vF
http://mitgcm.org/lxr/ident/MITgcm?_i=v4F
https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_fluxform/mom_fluxform.F
http://mitgcm.org/lxr/ident/MITgcm?_i=vF
http://mitgcm.org/lxr/ident/MITgcm?_i=v4F
https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_fluxform/mom_fluxform.F

MITgcm Documentation, Release 1.0

) 4 Axvj

Gide—drag — ey (I=ho) <= m (Anciaalp)u — Ascianz () Vu) (2.112)
ide—dra 4 A ui

Gside=drag _ A (1-— hc)iiv (Ancaral(p)v — Ascaraz(9)V20) (2.113)

In fact, the above discretization is not quite complete because it assumes that the bathymetry at velocity points is
deeper than at neighboring vorticity points, e.g. 1 — hy, <1 — h¢

S/R MOM_U_SIDEDRAG, MOM_V_SIDEDRAG
Gside—drag (gside—drag . yF (Jocal to MOM_FLUXFORM.F)

2.14.6 Vertical dissipation

Vertical viscosity terms are discretized with only partial adherence to the variable grid lengths introduced by the finite
volume formulation. This reduces the formal accuracy of these terms to just first order but only next to boundaries;
exactly where other terms appear such as linear and quadratic bottom drag.

X 1
szdzss — Arfh 6k’7-13 (2114)
qudiss _ L5 (2.115)
v Arfhs .
G:L_diss _ €nhm5k7—33 (2116)

represents the general discrete form of the vertical dissipation terms.

In the interior the vertical stresses are discretized:

1
T13 — Avr’rcdku
T23 — Avﬁékv
= A L é
733 = vA’I’f kW

It should be noted that in the non-hydrostatic form, the stress tensor is even less consistent than for the hydrostatic (see
Wajsowicz (1993) [Waj93]). It is well known how to do this properly (see Griffies and Hallberg (2000) /GHOO0]) and
is on the list of to-do’s.

S/R MOM_U_RVISCFLUX, MOM_V_RVISCFLUX

713 ¢ fVrUp, fVrDw (local to MOM_FLUXFORM.F)
To3 ¢ fVrUp, fVrDw (local to MOM_FLUXFORM.F)

2.14. Flux-form momentum equations 71

http://mitgcm.org/lxr/ident/MITgcm?_i=vF
https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_fluxform/mom_fluxform.F
http://mitgcm.org/lxr/ident/MITgcm?_i=fVrUp
http://mitgcm.org/lxr/ident/MITgcm?_i=fVrDw
https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_fluxform/mom_fluxform.F
http://mitgcm.org/lxr/ident/MITgcm?_i=fVrUp
http://mitgcm.org/lxr/ident/MITgcm?_i=fVrDw
https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_fluxform/mom_fluxform.F

MITgcm Documentation, Release 1.0

As for the lateral viscous terms, the free-slip condition is equivalent to simply setting the stress to zero on boundaries.
The no-slip condition is implemented as an additional term acting on top of the interior and free-slip stresses. Bottom
drag represents additional friction, in addition to that imposed by the no-slip condition at the bottom. The drag is cast
as a stress expressed as a linear or quadratic function of the mean flow in the layer above the topography:

1 S

ngttom—drag — <2AUAT + 7y + Cﬂ/@) U (2.117)
] —

Tagttom s — <2Av At CaV 2K EJ) v (2.118)

where these terms are only evaluated immediately above topography. r, (bottomDragLinear) has units of m.s~! and a
typical value of the order 0.0002 ms~t. Cy (bottomDragQuadratic) is dimensionless with typical values in the range
0.001-0.003.

S/R MOM_U_BOTTOMDRAG, MOM_V_BOTTOMDRAG
hottom=drag j \. . bottom=drag j Ay . yF (local to MOM_FLUXFORM.F)

2.14.7 Derivation of discrete energy conservation

These discrete equations conserve kinetic plus potential energy using the following definitions:

KE = % (w2 + 07 + enthk) 2.119)
2.14.8 Mom Diagnostics
<-Name->|Levs|<-parsing code->|<-- Units ——>|<- Tile (max=80c)
VISCAHZ | 15 |SZ MR Im~2/s |[Harmonic Visc Coefficient (m2/s),,
— (Zeta Pt)
VISCA4zZ | 15 |SZ MR |m~4/s |[Biharmonic Visc Coefficient (m4/s),,
— (Zeta Pt)
VISCAHD | 15 |SM MR Im"~2/s |[Harmonic Viscosity Coefficient (m2/s)
— (Div Pt)
VISCA4D | 15 |SM MR Im~4/s |[Biharmonic Viscosity Coefficient (m4/
—s) (Div Pt)
VAHZMAX | 15 |SZ MR Im~2/s |CFL-MAX Harm Visc Coefficient (m2/s)_,
— (Zeta Pt)
VA4ZMAX | 15 |SZ MR Im~4/s |[CFL-MAX Biharm Visc Coefficient (m4/
—s8) (Zeta Pt)
VAHDMAX | 15 |SM MR Im~2/s |CFL-MAX Harm Visc Coefficient (m2/s)
— (Div Pt)
VA4DMAX | 15 |SM MR Im~4/s |CFL-MAX Biharm Visc Coefficient (m4/

—s) (Div Pt)

(continues on next page)

72 Chapter 2. Discretization and Algorithm

http://mitgcm.org/lxr/ident/MITgcm?_i=bottomDragLinear
http://mitgcm.org/lxr/ident/MITgcm?_i=bottomDragQuadratic
http://mitgcm.org/lxr/ident/MITgcm?_i=vF
https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_fluxform/mom_fluxform.F

MITgcm Documentation, Release 1.0

(continued from previous page)

VAHZMIN | 15 |SZ MR Im~2/s |[RE-MIN Harm Visc Coefficient (m2/s)_,

— (Zeta Pt)

VA4ZMIN | 15 [SZ MR [m~4/s |[RE-MIN Biharm Visc Coefficient (m4/s)_,
— (Zeta Pt)

VAHDMIN | 15 |SM MR Im~2/s |[RE-MIN Harm Visc Coefficient (m2/s)_,

— (Div Pt)

VA4DMIN | 15 |SM MR Im~4/s |[RE-MIN Biharm Visc Coefficient (m4/s)
— (Div Pt)

VAHZLTH | 15 |SZ MR Im~2/s |Leith Harm Visc Coefficient (m2/s)_,

— (Zeta Pt)

VA4ZLTH | 15 |SZ MR Im~4/s |[Leith Biharm Visc Coefficient (m4/s)_,
— (Zeta Pt)

VAHDLTH | 15 |SM MR Im~2/s |[Leith Harm Visc Coefficient (m2/s),,

— (Div Pt)

VA4DLTH | 15 |SM MR Im~4/s |Leith Biharm Visc Coefficient (m4/s)
— (Div Pt)

VAHZLTHD| 15 |SZ MR Im~2/s |[LeithD Harm Visc Coefficient (m2/s)_,

— (Zeta Pt)

VA4ZLTHD| 15 |SZ MR Im~4/s |[LeithD Biharm Visc Coefficient (m4/s)
— (Zeta Pt)

VAHDLTHD| 15 |SM MR Im*~2/s |LeithD Harm Visc Coefficient (m2/s)_,

— (Div Pt)

VAA4DLTHD| 15 |SM MR Im~4/s |LeithD Biharm Visc Coefficient (m4/s)_,
— (Div Pt)

VAHZSMAG| 15 |SZ MR Im"~2/s |Smagorinsky Harm Visc Coefficient (m2/
—s) (Zeta Pt)

VA4ZSMAG| 15 |SZ MR Im~4/s | Smagorinsky Biharm Visc Coeff. (m4/s),,
— (Zeta Pt)

VAHDSMAG| 15 |SM MR Im~2/s |Smagorinsky Harm Visc Coefficient (m2/
—s) (Div Pt)

VA4DSMAG| 15 |SM MR Im~4/s |Smagorinsky Biharm Visc Coeff. (m4/s)
— (Div Pt)

momKE | 15 |SM MR Im*~2/s"2 |[Kinetic Energy (in momentum Eq.)
momHDiv | 15 |SM MR [s"—1 |Horizontal Divergence (in momentum Eq.
—)

momVort3| 15 |SZ MR |s~-1 |3rd component (vertical) of Vorticity
Strain | 15 |82 MR |s”=1 |Horizontal Strain of Horizontal
—~Velocities

Tension | 15 |SM MR [s"—1 |[Horizontal Tension of Horizontal
—Velocities

UBotDrag| 15 |[UU 129MR lm/s"2 |U momentum tendency from Bottom Drag
VBotDrag| 15 |VV 128MR Im/s”2 |V momentum tendency from Bottom Drag
USidDrag| 15 |UU 131IMR Im/s”2 |U momentum tendency from Side Drag
VSidDrag| 15 |VV 130MR [m/s"2 |V momentum tendency from Side Drag
Um_Diss | 15 |UU 133MR [m/s"2 |U momentum tendency from Dissipation
Vm_Diss | 15 |VV 132MR Im/s”2 |V momentum tendency from Dissipation
Um_Advec| 15 |[UU 135MR lm/s”2 |U momentum tendency from Advection
—terms

Vm_Advec| 15 |VV 134MR Im/s”2 |V momentum tendency from Advection
—terms

Um_Cori | 15 |UU 137MR Im/s”2 |U momentum tendency from Coriolis term
Vm_Cori | 15 |VV 136MR Im/s”2 |V momentum tendency from Coriolis term
Um_Ext | 15 |UU 137MR lm/s"2 |U momentum tendency from external
—forcing

Vm_Ext [15 |VV 138MR Im/s”2 |V momentum tendency from external
—forcing

Um_Advz3| 15 |UU 141MR Im/s”2 |U momentum tendency from Vorticity,
Advection (continues on next page)

2.14. Flux-form momentum equations

73

MITgcm Documentation, Release 1.0

(continued from previous page)

Vm_Advz3| 15 |VV 140MR Im/s”2 |V momentum tendency from Vorticity,
—Advection

Um_AdvRe| 15 |UU 143MR lm/s”2 |U momentum tendency from vertical
—Advection (Explicit part)

Vm_AdvRe| 15 |VV 142MR Im/s”2 |V momentum tendency from vertical
—Advection (Explicit part)

ADVx_Um | 15 |UM 145MR Im~4/s"2 | Zonal Advective Flux of U
—momentum

ADVy_Um | 15 |VZ 144MR Im~4/s"2 |[Meridional Advective Flux of U
—momentum

ADVrE_Um| 15 |WU LR Im~4/s"2 |Vertical Advective Flux of U
—momentum (Explicit part)

ADVX_Vm | 15 |UZ 148MR Im~4/s"2 | Zonal Advective Flux of V
—momentum

ADVy_Vm | 15 |VM 147MR Im~4/s"2 |[Meridional Advective Flux of V
—momentum

ADVrE_Vm| 15 |WV LR Im~4/s"2 |Vertical Advective Flux of V
—momentum (Explicit part)

VISCx_Um| 15 |UM 151MR Im~4/s”2 | Zonal Viscous Flux of U momentum
VISCy_Um| 15 |VZ 150MR Im~4/s"2 |[Meridional Viscous Flux of U momentum
VISrE_Um| 15 |WU LR Im~4/s"2 |Vertical Viscous Flux of U momentum
— (Explicit part)

VISrI_Um| 15 |WU LR [m~4/s"2 |[Vertical Viscous Flux of U momentum
— (Implicit part)

VISCx_Vm| 15 |UZ 155MR Im~4/s"2 | Zonal Viscous Flux of V momentum
VISCy_Vm| 15 |VM 154MR Im~4/s"2 |[Meridional Viscous Flux of V momentum
VISrE_Vm| 15 |WV LR Im~4/s"2 |Vertical Viscous Flux of V momentum
— (Explicit part)

VISrI_Vm| 15 |WV LR |m~4/s"2 |[Vertical Viscous Flux of V momentum,,

— (Implicit part)

2.15 Vector invariant momentum equations

The finite volume method lends itself to describing the continuity and tracer equations in curvilinear coordinate sys-
tems. However, in curvilinear coordinates many new metric terms appear in the momentum equations (written in
Lagrangian or flux-form) making generalization far from elegant. Fortunately, an alternative form of the equations,
the vector invariant equations are exactly that; invariant under coordinate transformations so that they can be applied
uniformly in any orthogonal curvilinear coordinate system such as spherical coordinates, boundary following or the
conformal spherical cube system.

The non-hydrostatic vector invariant equations read:

—

T+ 20+ OANT—bF+VB=V-7 (2.120)

which describe motions in any orthogonal curvilinear coordinate system. Here, B is the Bernoulli function and 5 =
V A ¥ is the vorticity vector. We can take advantage of the elegance of these equations when discretizing them and
use the discrete definitions of the grad, curl and divergence operators to satisfy constraints. We can also consider
the analogy to forming derived equations, such as the vorticity equation, and examine how the discretization can be
adjusted to give suitable vorticity advection among other things.

The underlying algorithm is the same as for the flux form equations. All that has changed is the contents of the “G’s”.
For the time-being, only the hydrostatic terms have been coded but we will indicate the points where non-hydrostatic
contributions will enter:

74 Chapter 2. Discretization and Algorithm

MITgcm Documentation, Release 1.0

G, = Giv + Giy} + ngw + GgmB + ng-rz + Gﬁ—dissip + Gz—dissip (2.121)
Gy = GI" + GF + G + GrP + G+ G s 4 G e (2.122)
Gw _ Gi}u + Gg}lv + G%u + ngB + szfdissip + szdissip (2123)

S/R MOM_VECINV

G, : gU(DYNVARS.h)
G, : gV (DYNVARS.h)
Gy : gW (NH_VARS.h)

2.15.1 Relative vorticity
The vertical component of relative vorticity is explicitly calculated and use in the discretization. The particular form
is crucial for numerical stability; alternative definitions break the conservation properties of the discrete equations.

Relative vorticity is defined:

1

CSZE:Ac

(0; Aycv — §;Azcu) (2.124)

where A¢ is the area of the vorticity cell presented in the vertical and I' is the circulation about that cell.

S/R MOM_CALC_RELVORT3
(3 @ vort3 (local to MOM_VECINV.F)

2.15.2 Kinetic energy

The kinetic energy, denoted K F, is defined:

1 —i —j —
KE — §(u2 +02 4 enhuﬂk) (2.125)

S/R MOM_CALC_KE
KFE : KE (local to MOM_VECINV.EF)

2.15. Vector invariant momentum equations 75

http://mitgcm.org/lxr/ident/MITgcm?_i=gU
https://github.com/MITgcm/MITgcm/blob/master/model/inc/DYNVARS.h
http://mitgcm.org/lxr/ident/MITgcm?_i=gV
https://github.com/MITgcm/MITgcm/blob/master/model/inc/DYNVARS.h
http://mitgcm.org/lxr/ident/MITgcm?_i=gW
https://github.com/MITgcm/MITgcm/blob/master/model/inc/NH_VARS.h
http://mitgcm.org/lxr/ident/MITgcm?_i=vort3
https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_vecinv/mom_vecinv.F
http://mitgcm.org/lxr/ident/MITgcm?_i=KE
https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_vecinv/mom_vecinv.F

MITgcm Documentation, Release 1.0

2.15.3 Coriolis terms

The potential enstrophy conserving form of the linear Coriolis terms are written:

LT
Giv = < Az h, (2.126)
v AZCC h(Tglts¥
1 Tiiz‘j
GV = —— L Ay,hy (2.127)
Y Ayc h(yg “

Here, the Coriolis parameter f is defined at vorticity (corner) points.

The potential enstrophy conserving form of the non-linear Coriolis terms are written:

1 (3 o’
Go _ _— 53 A J 2.128
Gy Ao he xghsv ()
1 C3 viz‘j
Cou _ A 2.129)
v Aye he Yghut (

The Coriolis terms can also be evaluated together and expressed in terms of absolute vorticity f + (3. The potential
enstrophy conserving form using the absolute vorticity is written:

I
fo G — _— A] 2.130
G’ + Gy Av. he zghsv ()
1 Fré J

Gl G = Ayghot' (2.131)

Ay. he

The distinction between using absolute vorticity or relative vorticity is useful when constructing higher order advection
schemes; monotone advection of relative vorticity behaves differently to monotone advection of absolute vorticity.
Currently the choice of relative/absolute vorticity, centered/upwind/high order advection is available only through
commented subroutine calls.

S/R MOM_VI_CORIOLIS, MOM_VI_U_CORIOLIS, MOM_VI_V_CORIOLIS

Gfv,GS3Y - uCf (local to MOM_VECINV.F)
GIv GS#v . vCf (local to MOM_VECINV.F)

2.15.4 Shear terms

The shear terms (2w and (;w) are are discretized to guarantee that no spurious generation of kinetic energy is possible;
the horizontal gradient of Bernoulli function has to be consistent with the vertical advection of shear:

1 —_— k
ngw = m/lcw ((5ku — enhéjw) (2.132)

76 Chapter 2. Discretization and Algorithm

http://mitgcm.org/lxr/ident/MITgcm?_i=uCf
https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_vecinv/mom_vecinv.F
http://mitgcm.org/lxr/ident/MITgcm?_i=vCf
https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_vecinv/mom_vecinv.F

MITgcm Documentation, Release 1.0

Gov — — L T (G — enndyw) (2.133)

= AArsh,

S/R MOM_VI_U_VERTSHEAR, MOM_VI_V_VERTSHEAR

G$2 : uCf (local to MOM_VECINV.F)
G$1v : vCf (local to MOM_VECINV.F)

2.15.5 Gradient of Bernoulli function

1

GO B = e 6:(¢' + KE) (2.134)
1

GOWE = Eéj(qs’ + KE) (2.135)

Y

S/R MOM_VI_U_GRAD_KE, MOM_VI_V_GRAD_KE

GO=KE : yCf (local to MOM_VECINV.F)

GOMF . yCf (local to MOM_VECINV.F)

2.15.6 Horizontal divergence
The horizontal divergence, a complimentary quantity to relative vorticity, is used in parameterizing the Reynolds

stresses and is discretized:

1
D= ﬂ(éiAyghwu +0;Azghgv) (2.136)

S/RMOM_CALC_KE
D : hDiv (local to MOM_VECINV.F)

2.15.7 Horizontal dissipation

The following discretization of horizontal dissipation conserves potential vorticity (thickness weighted relative vortic-
ity) and divergence and dissipates energy, enstrophy and divergence squared:

—dissi 1 * 1 *
Ghdissiv — xcéi(ADD — ApsD”) - m‘sth(ACC = Acal”) (2.137)
o 1
h—dissip _) AC — A CF —0:(ApD — ApsD* .
G Amvhsé’hd ¢ —AC) + Aycéj(D paD") (2.138)

2.15. Vector invariant momentum equations 77

http://mitgcm.org/lxr/ident/MITgcm?_i=uCf
https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_vecinv/mom_vecinv.F
http://mitgcm.org/lxr/ident/MITgcm?_i=vCf
https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_vecinv/mom_vecinv.F
http://mitgcm.org/lxr/ident/MITgcm?_i=uCf
https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_vecinv/mom_vecinv.F
http://mitgcm.org/lxr/ident/MITgcm?_i=vCf
https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_vecinv/mom_vecinv.F
http://mitgcm.org/lxr/ident/MITgcm?_i=hDiv
https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_vecinv/mom_vecinv.F

MITgcm Documentation, Release 1.0

where
D" = Alh (6:AyghuV2u + 8;Azyh V20)
= Jic(é}Aycvzv - 6jA:L'CV2u)

S/R MOM_VI_HDISSIP

Gh=dissip : yDissip (local to MOM_VI_HDISSIP.F)
Gh=dissip . yDissip (local to MOM_VI_HDISSIP.F)

2.15.8 Vertical dissipation

Currently, this is exactly the same code as the flux form equations.

Gu—diss — OrTis (2.139)

1
A’I“fhw

v—diss __
G, =

1
)
Arfhs kT23 (2.140)

represents the general discrete form of the vertical dissipation terms.

In the interior the vertical stresses are discretized:

1

T13 = AvEKSku
1

T23 — AUTTCC;]C’U

S/R MOM_U_RVISCFLUX, MOM_V_RVISCFLUX
T13, Tog : vif (local to MOM_VECINV.EF)

2.16 Tracer equations

The basic discretization used for the tracer equations is the second order piece-wise constant finite volume form of the
forced advection-diffusion equations. There are many alternatives to second order method for advection and alternative
parameterizations for the sub-grid scale processes. The Gent-McWilliams eddy parameterization, KPP mixing scheme
and PV flux parameterization are all dealt with in separate sections. The basic discretization of the advection-diffusion
part of the tracer equations and the various advection schemes will be described here.

2.16.1 Time-stepping of tracers: ABII

The default advection scheme is the centered second order method which requires a second order or quasi-second
order time-stepping scheme to be stable. Historically this has been the quasi-second order Adams-Bashforth method
(ABII) and applied to all terms. For an arbitrary tracer, 7, the forced advection-diffusion equation reads:

78 Chapter 2. Discretization and Algorithm

http://mitgcm.org/lxr/ident/MITgcm?_i=uDissip
https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_vecinv/mom_vi_hdissip.F
http://mitgcm.org/lxr/ident/MITgcm?_i=vDissip
https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_vecinv/mom_vi_hdissip.F
http://mitgcm.org/lxr/ident/MITgcm?_i=vrf
https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_vecinv/mom_vecinv.F

MITgcm Documentation, Release 1.0

o+ ngv = G;sz + G}orc (2.141)

where G ., G, and G

T dus are the tendencies due to advection, diffusion and forcing, respectively, namely:

orc

Glao = OzuT + 0yvT + OpwT — TV -V (2.142)

adv

and the forcing can be some arbitrary function of state, time and space.

The term, 7V - v, is required to retain local conservation in conjunction with the linear implicit free-surface. It only
affects the surface layer since the flow is non-divergent everywhere else. This term is therefore referred to as the
surface correction term. Global conservation is not possible using the flux-form (as here) and a linearized free-surface
(Griffies and Hallberg (2000) /GHOO] , Campin et al. (2004) [CAHMO04]).

The continuity equation can be recovered by setting G4 = Gforc = 0and 7 = 1.

The driver routine that calls the routines to calculate tendencies are CALC_GT and CALC_GS for temperature and
salt (moisture), respectively. These in turn call a generic advection diffusion routine GAD_CALC_RHS that is called
with the flow field and relevant tracer as arguments and returns the collective tendency due to advection and diffusion.
Forcing is add subsequently in CALC_GT or CALC_GS to the same tendency array.

S/R GAD_CALC_RHS
T : tau (argument)
G™) : gTracer (argument)
F, : fVerT (argument)

The space and time discretization are treated separately (method of lines). Tendencies are calculated at time levels n
and n — 1 and extrapolated to 7 4+ 1/2 using the Adams-Bashforth method:

G +1/2) _ (g LG _ (% + oG- (2.144)

where G = GT, + G7, 71 T Gy at time step n. The tendency at n — 1 is not re-calculated but rather the tendency
at n is stored in a global array for later re-use.

S/R ADAMS_BASHFORTH?2

G("t1/2) : oTracer (argument on exit)
G™ : gTracer (argument on entry)
G(=1 : oTrNm1 (argument)

€ : ABeps (PARAMS.h)

The tracers are stepped forward in time using the extrapolated tendency:

7_(n—‘,—l) _ 7_(n) + AtG(n‘H/Q) (2.145)

2.16. Tracer equations 79

https://github.com/MITgcm/MITgcm/blob/master/model/src/calc_gt.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/calc_gs.F
https://github.com/MITgcm/MITgcm/blob/master/pkg/generic_advdiff/gad_calc_rhs.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/calc_gt.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/calc_gs.F
http://mitgcm.org/lxr/ident/MITgcm?_i=tau
http://mitgcm.org/lxr/ident/MITgcm?_i=gTracer
http://mitgcm.org/lxr/ident/MITgcm?_i=fVerT
http://mitgcm.org/lxr/ident/MITgcm?_i=gTracer
http://mitgcm.org/lxr/ident/MITgcm?_i=gTracer
http://mitgcm.org/lxr/ident/MITgcm?_i=gTrNm1
http://mitgcm.org/lxr/ident/MITgcm?_i=ABeps
https://github.com/MITgcm/MITgcm/blob/master/model/inc/PARAMS.h

MITgcm Documentation, Release 1.0

S/R TIMESTEP_TRACER

7+ gTracer (argument on exit)
7(") : tracer (argument on entry)
G +1/2) + gTracer (argument)

At : deltaTtracer (PARAMS.h)

Strictly speaking the ABII scheme should be applied only to the advection terms. However, this scheme is only used
in conjunction with the standard second, third and fourth order advection schemes. Selection of any other advection
scheme disables Adams-Bashforth for tracers so that explicit diffusion and forcing use the forward method.

2.17 Linear advection schemes

The advection schemes known as centered second order, centered fourth order, first order upwind and upwind biased
third order are known as linear advection schemes because the coefficient for interpolation of the advected tracer are
linear and a function only of the flow, not the tracer field it self. We discuss these first since they are most commonly
used in the field and most familiar.

2.17.1 Centered second order advection-diffusion

The basic discretization, centered second order, is the default. It is designed to be consistent with the continuity
equation to facilitate conservation properties analogous to the continuum. However, centered second order advection
is notoriously noisy and must be used in conjunction with some finite amount of diffusion to produce a sensible
solution.

The advection operator is discretized:

AT Gl = 6;Fy + 0;F, + 6, F, (2.146)

adv

where the area integrated fluxes are given by:

F,= U7
Fy= V7
F.= W7*

The quantities U, V' and W are volume fluxes. defined as:
U= Ay,Arshyu
V= Ax,Arshev
W = A w

For non-divergent flow, this discretization can be shown to conserve the tracer both locally and globally and to globally
conserve tracer variance, 72. The proof is given in Adcroft (1995) [Adc95] and Adcroft et al. (1997) [AHM97] .

S/R GAD_C2_ADV_X

F, : uT (argument)
U : uTrans (argument)
T : tracer (argument)

80 Chapter 2. Discretization and Algorithm

http://mitgcm.org/lxr/ident/MITgcm?_i=gTracer
http://mitgcm.org/lxr/ident/MITgcm?_i=tracer
http://mitgcm.org/lxr/ident/MITgcm?_i=gTracer
http://mitgcm.org/lxr/ident/MITgcm?_i=deltaTtracer
https://github.com/MITgcm/MITgcm/blob/master/model/inc/PARAMS.h
http://mitgcm.org/lxr/ident/MITgcm?_i=uT
http://mitgcm.org/lxr/ident/MITgcm?_i=uTrans
http://mitgcm.org/lxr/ident/MITgcm?_i=tracer

MITgcm Documentation, Release 1.0

S/R GAD_C2_ADV_Y

Fy : vT (argument)
V : vTrans (argument)
T : tracer (argument)

S/R GAD_C2_ADV_R

F,. : wT (argument)
W : rTrans (argument)
T : tracer (argument)

2.17.2 Third order upwind bias advection

Upwind biased third order advection offers a relatively good compromise between accuracy and smoothness. It is not
a “positive” scheme meaning false extrema are permitted but the amplitude of such are significantly reduced over the
centered second order method.

The third order upwind fluxes are discretized:

%

1 1 1
F, = Ut — Zdii S1U10: =i
T 5 T + 2| | 5 T
1.7 1 1
F, = Vr— 65“'7' + §|V|5j65jj7—
[
1 1 1
Ff,n = WT — 65”7_ -+ §|W|6k65kk7_

At boundaries, ;7 is set to zero allowing d,,,, to be evaluated. We are currently examine the accuracy of this boundary
condition and the effect on the solution.

S/R GAD_U3_ADV_X

F, : uT (argument)
U : uTrans (argument)
T : tracer ([argument)

S/R GAD_U3_ADV_Y

Fy . vT (argument)
V' : vTrans (argument)
T : tracer (argument)

S/R GAD_U3_ADV_R

F, : wT (argument)
W : rTrans (argument)

2.17. Linear advection schemes 81

http://mitgcm.org/lxr/ident/MITgcm?_i=vT
http://mitgcm.org/lxr/ident/MITgcm?_i=vTrans
http://mitgcm.org/lxr/ident/MITgcm?_i=tracer
http://mitgcm.org/lxr/ident/MITgcm?_i=wT
http://mitgcm.org/lxr/ident/MITgcm?_i=rTrans
http://mitgcm.org/lxr/ident/MITgcm?_i=tracer
http://mitgcm.org/lxr/ident/MITgcm?_i=uT
http://mitgcm.org/lxr/ident/MITgcm?_i=uTrans
http://mitgcm.org/lxr/ident/MITgcm?_i=tracer
http://mitgcm.org/lxr/ident/MITgcm?_i=vT
http://mitgcm.org/lxr/ident/MITgcm?_i=vTrans
http://mitgcm.org/lxr/ident/MITgcm?_i=tracer
http://mitgcm.org/lxr/ident/MITgcm?_i=wT
http://mitgcm.org/lxr/ident/MITgcm?_i=rTrans

MITgcm Documentation, Release 1.0

T : tracer (argument)

2.17.3 Centered fourth order advection

Centered fourth order advection is formally the most accurate scheme we have implemented and can be used to
great effect in high resolution simulations where dynamical scales are well resolved. However, the scheme is noisy,
like the centered second order method, and so must be used with some finite amount of diffusion. Bi-harmonic is
recommended since it is more scale selective and less likely to diffuse away the well resolved gradient the fourth order
scheme worked so hard to create.

The centered fourth order fluxes are discretized:

1
F’Jc = Ut 65”‘7'
1 J
Fy = Vr 6(5“'7'
1 k
Fr = Wr — 6(5“‘7'

As for the third order scheme, the best discretization near boundaries is under investigation but currently 6,7 = O on a
boundary.

S/R GAD_C4_ADV_X

F, : uT (argument)
U : uTrans (argument)
T : tracer (argument)

S/R GAD_C4_ADV_Y

Fy : vT (argument)
V' : vTrans (argument)
T : tracer (argument)

S/R GAD_C4_ADV_R

F,. : wT (argument)
W : rTrans (argument)
T : tracer (argument)

2.17.4 First order upwind advection

Although the upwind scheme is the underlying scheme for the robust or non-linear methods given in Section 2.18, we
haven’t actually implemented this method for general use. It would be very diffusive and it is unlikely that it could
ever produce more useful results than the positive higher order schemes.

82 Chapter 2. Discretization and Algorithm

http://mitgcm.org/lxr/ident/MITgcm?_i=tracer
http://mitgcm.org/lxr/ident/MITgcm?_i=uT
http://mitgcm.org/lxr/ident/MITgcm?_i=uTrans
http://mitgcm.org/lxr/ident/MITgcm?_i=tracer
http://mitgcm.org/lxr/ident/MITgcm?_i=vT
http://mitgcm.org/lxr/ident/MITgcm?_i=vTrans
http://mitgcm.org/lxr/ident/MITgcm?_i=tracer
http://mitgcm.org/lxr/ident/MITgcm?_i=wT
http://mitgcm.org/lxr/ident/MITgcm?_i=rTrans
http://mitgcm.org/lxr/ident/MITgcm?_i=tracer

MITgcm Documentation, Release 1.0

Upwind bias is introduced into many schemes using the abs function and it allows the first order upwind flux to be
written:

&
I

|
U?z — §|U|(5ZT
|
1
F.= W7 - 5| WoeT

If for some reason the above method is desired, the second order flux limiter scheme described in Section 2.18.1
reduces to the above scheme if the limiter is set to zero.

2.18 Non-linear advection schemes

Non-linear advection schemes invoke non-linear interpolation and are widely used in computational fluid dynamics
(non-linear does not refer to the non-linearity of the advection operator). The flux limited advection schemes belong
to the class of finite volume methods which neatly ties into the spatial discretization of the model.

When employing the flux limited schemes, first order upwind or direct-space-time method, the time-stepping is
switched to forward in time.

2.18.1 Second order flux limiters
The second order flux limiter method can be cast in several ways but is generally expressed in terms of other flux

approximations. For example, in terms of a first order upwind flux and second order Lax-Wendroff flux, the limited
flux is given as:

F=5Nn+ w(r)FLW (2.147)

where t(r) is the limiter function,
1
P =uT — §|u|6ﬂ

is the upwind flux,

FLW = F1 + %(1 — 0)51‘7
is the Lax-Wendroff flux and ¢ = % is the Courant (CFL) number.

The limiter function, ¥ (r), takes the slope ratio

Ti—1 — Ti—2

r=—Y u>0
Ty — Ti—1
Ti+1 — Ti
T:Mv u<0
Ti — Ti—1

as its argument. There are many choices of limiter function but we only provide the Superbee limiter (Roe 1995
[Roe85]):

¥ (r) = max|[0, min[1, 27|, min|2, r]]

S/R GAD_FLUXLIMIT_ADV_X

2.18. Non-linear advection schemes 83

MITgcm Documentation, Release 1.0

F, : uT (argument)
U : uTrans (argument)
T : tracer (argument)

S/R GAD_FLUXLIMIT_ADV_Y

Fy : vT (argument)
V : vTrans (argument)
T : tracer (argument)

S/R GAD_FLUXLIMIT_ADV_R

F,.: wT (argument)
W : rTrans (argument)
T : tracer (argument)

2.18.2 Third order direct space time

The direct-space-time method deals with space and time discretization together (other methods that treat space and
time separately are known collectively as the “Method of Lines”). The Lax-Wendroff scheme falls into this category;
it adds sufficient diffusion to a second order flux that the forward-in-time method is stable. The upwind biased third
order DST scheme is:

FZ’U,(TZ',1 —‘rdo(Ti—Ti,l)—l-dl(Ti,l—TZ‘,Q)) YV u>0

2.148
F=u(r—do(ri —mi—1) —di(Tiz1— 7)) ¥V u<0 ()

where
d L 2
1= 2@ e~ e
dy= (L= Je)(1+)

The coefficients dy and d; approach 1/3 and 1/6 respectively as the Courant number, ¢, vanishes. In this limit, the
conventional third order upwind method is recovered. For finite Courant number, the deviations from the linear method
are analogous to the diffusion added to centered second order advection in the Lax-Wendroff scheme.

The DST3 method described above must be used in a forward-in-time manner and is stable for 0 < |¢| < 1. Although
the scheme appears to be forward-in-time, it is in fact third order in time and the accuracy increases with the Courant
number! For low Courant number, DST3 produces very similar results (indistinguishable in Figure 2.10) to the linear
third order method but for large Courant number, where the linear upwind third order method is unstable, the scheme
is extremely accurate (Figure 2.11) with only minor overshoots.

S/R GAD_DST3_ADV_X

F, : uT (argument)
U : uTrans (argument)
T : tracer (argument)

84 Chapter 2. Discretization and Algorithm

http://mitgcm.org/lxr/ident/MITgcm?_i=uT
http://mitgcm.org/lxr/ident/MITgcm?_i=uTrans
http://mitgcm.org/lxr/ident/MITgcm?_i=tracer
http://mitgcm.org/lxr/ident/MITgcm?_i=vT
http://mitgcm.org/lxr/ident/MITgcm?_i=vTrans
http://mitgcm.org/lxr/ident/MITgcm?_i=tracer
http://mitgcm.org/lxr/ident/MITgcm?_i=wT
http://mitgcm.org/lxr/ident/MITgcm?_i=rTrans
http://mitgcm.org/lxr/ident/MITgcm?_i=tracer
http://mitgcm.org/lxr/ident/MITgcm?_i=uT
http://mitgcm.org/lxr/ident/MITgcm?_i=uTrans
http://mitgcm.org/lxr/ident/MITgcm?_i=tracer

MITgcm Documentation, Release 1.0

S/R GAD_DST3_ADV_Y

Fy : vT (argument)
V : vTrans (argument)
T : tracer (argument)

S/R GAD_DST3_ADV_R

F,. : wT (argument)
W : rTrans (argument)
T : tracer (argument)

2.18.3 Third order direct space time with flux limiting

The overshoots in the DST3 method can be controlled with a flux limiter. The limited flux is written:

F = %(u + |ul) (ric1 + () (1 — Tic1)) + %(u —[u]) (ric1 + () (7 = 7i1)) (2.149)

where

and the limiter is the Sweby limiter:

¥ (r) = max[0, min[min(1, dg + d;7], L=

S/R GAD_DST3FL_ADV_X

F, : uT (argument)
U : uTrans (argument)
T : tracer ([argument)

S/R GAD_DST3FL_ADV_Y

Fy . vT (argument)
V' : vTrans (argument)
T : tracer (argument)

S/R GAD_DST3FL_ADV_R

F, : wT (argument)

2.18. Non-linear advection schemes

85

http://mitgcm.org/lxr/ident/MITgcm?_i=vT
http://mitgcm.org/lxr/ident/MITgcm?_i=vTrans
http://mitgcm.org/lxr/ident/MITgcm?_i=tracer
http://mitgcm.org/lxr/ident/MITgcm?_i=wT
http://mitgcm.org/lxr/ident/MITgcm?_i=rTrans
http://mitgcm.org/lxr/ident/MITgcm?_i=tracer
http://mitgcm.org/lxr/ident/MITgcm?_i=uT
http://mitgcm.org/lxr/ident/MITgcm?_i=uTrans
http://mitgcm.org/lxr/ident/MITgcm?_i=tracer
http://mitgcm.org/lxr/ident/MITgcm?_i=vT
http://mitgcm.org/lxr/ident/MITgcm?_i=vTrans
http://mitgcm.org/lxr/ident/MITgcm?_i=tracer
http://mitgcm.org/lxr/ident/MITgcm?_i=wT

MITgcm Documentation, Release 1.0

W : rTrans (argument)
T : tracer (argument)

2.18.4 Multi-dimensional advection

In many of the aforementioned advection schemes the behavior in multiple dimensions is not necessarily as good as
the one dimensional behavior. For instance, a shape preserving monotonic scheme in one dimension can have severe
shape distortion in two dimensions if the two components of horizontal fluxes are treated independently. There is a
large body of literature on the subject dealing with this problem and among the fixes are operator and flux splitting
methods, corner flux methods, and more. We have adopted a variant on the standard splitting methods that allows the
flux calculations to be implemented as if in one dimension:

1 1
n+1/3 _ n_ A 5. FE (7 n_~ s
T T t (Ax(sl (™) +71 Aﬁézu)
1 1
I N (Ayaij<T"+1/3> ¥ TnAyaw) 2.150)

1 1
n+3/3 — n+2/3 z (. n+2/3 n)
T T At (TékF (1)+ T szw)

In order to incorporate this method into the general model algorithm, we compute the effective tendency rather than
update the tracer so that other terms such as diffusion are using the n time-level and not the updated n + 3/3 quantities:

n 1
Gadt)l/Z _ E(7n+3/3 _ TTL)

So that the over all time-stepping looks likes:

7_n+1 =7+ At (Gn+1/2 + Gdiff(Tn) + G?oreing)

adv

S/R GAD_ADVECTION

T : tracer (argument)
szt)l/ % . oTracer (argument)
F,,Fy, F, : aF (local)

U : uTrans (local)

V : vTrans (local)

W : rTrans (local)

A schematic of multi-dimension time stepping for the cube sphere configuration is show in Figure 2.9 .

2.19 Comparison of advection schemes

Table 2.2 shows a summary of the different advection schemes available in MITgcm. “A.B.” stands for Adams-
Bashforth and “DST” for direct space time. The code corresponds to the number used to select the corresponding
advection scheme in the parameter file (e.g., tempAdvScheme=3 in file data selects the 3rd order upwind advection
scheme for temperature).

86 Chapter 2. Discretization and Algorithm

http://mitgcm.org/lxr/ident/MITgcm?_i=rTrans
http://mitgcm.org/lxr/ident/MITgcm?_i=tracer
http://mitgcm.org/lxr/ident/MITgcm?_i=tracer
http://mitgcm.org/lxr/ident/MITgcm?_i=gTracer
http://mitgcm.org/lxr/ident/MITgcm?_i=aF
http://mitgcm.org/lxr/ident/MITgcm?_i=uTrans
http://mitgcm.org/lxr/ident/MITgcm?_i=vTrans
http://mitgcm.org/lxr/ident/MITgcm?_i=rTrans

MITgcm Documentation, Release 1.0

120

100

80

60

40

20

120

100

80

60

40

20

120

100

80

60

40

20

0

npass = 1

Calc & Update X dir
Calc & Update Y dir
X dir (Overlap)
Y dir (Overlap)

npass =2

120 140 160

il

B Calc & Update X dir
= Calc & Update Y dir
B X dir (Overlap)
B v dir (Overlap)
0O 20 40 60 80 100 120 140 160
npass =3
4
B Calc & Update X dir
1 1 B Calc & Update Y dir
B X dir (Overlap)
B v dir (Overlap)
0O 20 40 60 80 100 120 140 160

Figure 2.9: Multi-dimensional advection time-stepping with cubed-sphere topology.

2.19.

Comparison of advection schemes

87

MITgcm Documentation, Release 1.0

Table 2.2: MITgcm Advection Schemes

use
use | multi | stencil

Advection Scheme Code | AB? | -dim? | (1-D) | comments
1st order upwind 1 no yes 3 linear 7, non-linear v
centered 2nd order 2 yes no 3 linear
3rd order upwind 3 yes no 5 linear 7
centered 4th order 4 yes no 5 linear
2nd order DST (Lax-Wendroff) 20 no yes 3 linear 7, non-linear v
3rd order DST 30 no yes 5 linear 7, non-linear v
2nd order-moment Prather 80 no yes
2nd order flux limiters 77 no yes 5 non-linear
3rd order DST flux limiter 33 no yes 5 non-linear
2nd order-moment Prather w/limiter 81 no yes
piecewise parabolic w/“null” limiter 40 no yes
piecewise parabolic w/“mono” limiter | 41 no yes
piecewise quartic w/“null” limiter 50 no yes
piecewise quartic w/“mono” limiter 51 no yes
piecewise quartic w/“weno” limiter 52 no yes
7th order one-step method w/ 7 no yes
monotonicity preserving limiter

Shown in Figure 2.10 and Figure 2.11 is a 1-D comparison of advection schemes. Here we advect both a smooth hill
and a hill with a more abrupt shock. Figure 2.10 shown the result for a weak flow (low Courant number) whereas
Figure 2.11 shows the result for a stronger flow (high Courant number).

Figure 2.12, Figure 2.13 and Figure 2.14 show solutions to a simple diagonal advection problem using a selection of
schemes for low, moderate and high Courant numbers, respectively. The top row shows the linear schemes, integrated
with the Adams-Bashforth method. Theses schemes are clearly unstable for the high Courant number and weakly
unstable for the moderate Courant number. The presence of false extrema is very apparent for all Courant numbers.
The middle row shows solutions obtained with the unlimited but multi-dimensional schemes. These solutions also
exhibit false extrema though the pattern now shows symmetry due to the multi-dimensional scheme. Also, the schemes
are stable at high Courant number where the linear schemes weren’t. The bottom row (left and middle) shows the
limited schemes and most obvious is the absence of false extrema. The accuracy and stability of the unlimited non-
linear schemes is retained at high Courant number but at low Courant number the tendency is to lose amplitude in
sharp peaks due to diffusion. The one dimensional tests shown in Figure 2.10 and Figure 2.11 show this phenomenon.

Finally, the bottom left and right panels use the same advection scheme but the right does not use the multi-dimensional
method. At low Courant number this appears to not matter but for moderate Courant number severe distortion of the
feature is apparent. Moreover, the stability of the multi-dimensional scheme is determined by the maximum Courant
number applied of each dimension while the stability of the method of lines is determined by the sum. Hence, in the
high Courant number plot, the scheme is unstable.

With many advection schemes implemented in the code two questions arise: “Which scheme is best?”” and “Why don’t
you just offer the best advection scheme?”. Unfortunately, no one advection scheme is “the best” for all particular
applications and for new applications it is often a matter of trial to determine which is most suitable. Here are some
guidelines but these are not the rule;

* If you have a coarsely resolved model, using a positive or upwind biased scheme will introduce significant
diffusion to the solution and using a centered higher order scheme will introduce more noise. In this case,
simplest may be best.

88 Chapter 2. Discretization and Algorithm

MITgcm Documentation, Release 1.0

i ' ' ' ' ' PR S ' 1| + Analytic solution
a) }Q\ M N — upwind—1
|| — DsT-3
@05 Vi ’* upwind-3
//"”ﬂ\v TT— upwind-2

O —s oo o—o"* e e ee oo e oo ole o—d —s oo o—0 o0 oo o

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

+ Analytic solution
—— Lax-Wendroff
4-DST
—— centered-2
centered-4
— 4-FV

+ Analytic solution
— minmod
—— Superbee
van Leer (MC)
van Leer (alb)

. Analytic solution
—— 3-DST Sw u=1
3-DST Sw u(c)
4-DST Sw u(c)

s 42 e—c e—< < >s =

, N
/—\ Al
) ‘
// \
O—ca—o; Co = T 04 —e
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X

Figure 2.10: Comparison of 1-D advection schemes: Courant number is 0.05 with 60 points and solutions are shown
for T=1 (one complete period). a) Shows the upwind biased schemes; first order upwind, DST3, third order upwind
and second order upwind. b) Shows the centered schemes; Lax-Wendroff, DST4, centered second order, centered
fourth order and finite volume fourth order. c) Shows the second order flux limiters: minmod, Superbee, MC limiter
and the van Leer limiter. d) Shows the DST3 method with flux limiters due to Sweby with p =1, u = ¢/(1 — ¢) and
a fourth order DST method with Sweby limiter, u = ¢/(1 — ¢) .

2.19. Comparison of advection schemes 89

MITgcm Documentation, Release 1.0

@ 0.5

(0] o

@ 0.5

0

Analytic solution
upwind-1
DST-3

Analytic solution
Lax—Wendroff
4-DST

/&\

Analytic solution
minmod
Superbee

i van Leer (MC)
J J o van Leer (alb)
0 0.1 0.2 0.3 o.4 0.5 0.6 07 08 09
-d) ' ' If [' Analytic solution
A\ / \ 3-DST Sw u=1
\ |

L , 3-DST Sw u(c)
\ 4-DST Sw u(c)
. |

—ce—o——-/ \‘\"“’/&eo—e —: o< 3¢ > e z—v o4 \o—oa—oe—o s oo

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

X

Figure 2.11: Comparison of 1-D advection schemes: Courant number is 0.89 with 60 points and solutions are shown
for T=1 (one complete period). a) Shows the upwind biased schemes; first order upwind and DST3. Third order
upwind and second order upwind are unstable at this Courant number. b) Shows the centered schemes; Lax-Wendroff,
DST4. Centered second order, centered fourth order and finite volume fourth order are unstable at this Courant number.
¢) Shows the second order flux limiters: minmod, Superbee, MC limiter and the van Leer limiter. d) Shows the DST3
method with flux limiters due to Sweby with p = 1, u = ¢/(1 — ¢) and a fourth order DST method with Sweby
limiter, u = ¢/(1 —¢) .

90

Chapter 2. Discretization and Algorithm

MITgcm Documentation, Release 1.0

2nd order centered 3rd order upwind 4th order centered

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
Lax-Wendroff 3-DST 4-DST

0.2 0.4 06 0.8 0.2 0.4 0.6 0.8 0.2 0.4 06 0.8
Superbee flux limiter 3-DST Sweby u=u(c) Superbee (no multi-dim)

0.2 0.4 06 0.8 0.2 0.4 0.6 0.8 0.2 0.4 06 0.8

Figure 2.12: Comparison of advection schemes in two dimensions; diagonal advection of a resolved Gaussian feature.
Courant number is 0.01 with 30 x 30 points and solutions are shown for T=1/2. White lines indicate zero crossing
(ie. the presence of false minima). The left column shows the second order schemes; top) centered second order with
Adams-Bashforth, middle) Lax-Wendroff and bottom) Superbee flux limited. The middle column shows the third
order schemes; top) upwind biased third order with Adams-Bashforth, middle) third order direct space-time method
and bottom) the same with flux limiting. The top right panel shows the centered fourth order scheme with Adams-
Bashforth and right middle panel shows a fourth order variant on the DST method. Bottom right panel shows the
Superbee flux limiter (second order) applied independently in each direction (method of lines).

2.19. Comparison of advection schemes 91

MITgcm Documentation, Release 1.0

2nd order centered 3rd order upwind 4th order centered

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
Lax-Wendroff 3-DST 4-DST

0.2 0.4 06 0.8 0.2 0.4 0.6 0.8 0.2 0.4 06 0.8
Superbee flux limiter 3-DST Sweby u=u(c) Superbee (no multi-dim)

0.2 0.4 06 0.8 0.2 0.4 0.6 0.8 0.2 0.4 06 0.8

Figure 2.13: Comparison of advection schemes in two dimensions; diagonal advection of a resolved Gaussian feature.
Courant number is 0.27 with 30 x 30 points and solutions are shown for T=1/2. White lines indicate zero crossing
(ie. the presence of false minima). The left column shows the second order schemes; top) centered second order with
Adams-Bashforth, middle) Lax-Wendroff and bottom) Superbee flux limited. The middle column shows the third
order schemes; top) upwind biased third order with Adams-Bashforth, middle) third order direct space-time method
and bottom) the same with flux limiting. The top right panel shows the centered fourth order scheme with Adams-
Bashforth and right middle panel shows a fourth order variant on the DST method. Bottom right panel shows the
Superbee flux limiter (second order) applied independently in each direction (method of lines).

92 Chapter 2. Discretization and Algorithm

MITgcm Documentation, Release 1.0

2nd order centered 3rd order upwind 4th order centered
0.8)
06| \\ |
0.2 S

0.2 04 0.6 0.8
4-DST

0.2 0.4 06 0.8 0.2 0.4 0.6 0.8 0.2 0.4 06 0.8
Superbee flux limiter 3-DST Sweby u=u(c) Superbee (no multi-dim)

0.2 0.4 06 0.8 0.2 0.4 0.6 0.8 0.2 0.4 06 0.8

Figure 2.14: Comparison of advection schemes in two dimensions; diagonal advection of a resolved Gaussian feature.
Courant number is 0.47 with 30 x 30 points and solutions are shown for T=1/2. White lines indicate zero crossings
and initial maximum values (ie. the presence of false extrema). The left column shows the second order schemes; top)
centered second order with Adams-Bashforth, middle) Lax-Wendroff and bottom) Superbee flux limited. The middle
column shows the third order schemes; top) upwind biased third order with Adams-Bashforth, middle) third order
direct space-time method and bottom) the same with flux limiting. The top right panel shows the centered fourth order
scheme with Adams-Bashforth and right middle panel shows a fourth order variant on the DST method. Bottom right
panel shows the Superbee flux limiter (second order) applied independently in each direction (method of lines).

2.19. Comparison of advection schemes 93

MITgcm Documentation, Release 1.0

* If you have a high resolution model, using a higher order scheme will give a more accurate solution but scale-
selective diffusion might need to be employed. The flux limited methods offer similar accuracy in this regime.

* If your solution has shocks or propagating fronts then a flux limited scheme is almost essential.

* If your time-step is limited by advection, the multi-dimensional non-linear schemes have the most stability (up
to Courant number 1).

* If you need to know how much diffusion/dissipation has occurred you will have a lot of trouble figuring it out
with a non-linear method.

* The presence of false extrema is non-physical and this alone is the strongest argument for using a positive
scheme.

2.20 Shapiro Filter

The Shapiro filter (Shapiro 1970) [Sha70] is a high order horizontal filter that efficiently remove small scale grid noise
without affecting the physical structures of a field. It is applied at the end of the time step on both velocity and tracer
fields.

Three different space operators are considered here (S1,S2 and S4). They differ essentially by the sequence of deriva-
tive in both X and Y directions. Consequently they show different damping response function specially in the diagonal
directions X+Y and X-Y.

Space derivatives can be computed in the real space, taking into account the grid spacing. Alternatively, a pure
computational filter can be defined, using pure numerical differences and ignoring grid spacing. This later form is
stable whatever the grid is, and therefore specially useful for highly anisotropic grid such as spherical coordinate grid.
A damping time-scale parameter 754, defines the strength of the filter damping.

The three computational filter operators are :

At 1 1
lc: 1-1/2) 4 (56,)"
Sl [1=1/2 = {(300)" + (38,3)")]
At 1
2c : 1— - 5” 5 "
S2c 1= {50+)"
At 1 At 1
4c : 1-— =0:)" 1 — ——(=0;;)"
Sde (1= ()"l = == (0)")

In addition, the S2 operator can easily be extended to a physical space filter:
At L2
S2g - (VY

Tshap 8

with the Laplacian operator 62 and a length scale parameter Lj,q,. The stability of this S2¢g filter requires Lpq), <
Min (@b (Az, Ay).

2.20.1 SHAP Diagnostics

<-Name->|Levs|parsing code|<-Units->|[<- Tile (max=80c)

SHAP_dT | 5 |SM MR |K/s | Temperature Tendency due to Shapiro Filter
SHAP_dS | 5 |SM MR |g/kg/s | Specific Humidity Tendency due to Shapiro Filter
SHAP_dU | 5 |UU 148MR |m/s"2 | Zonal Wind Tendency due to Shapiro Filter
SHAP_dV | 5 |VV 147MR |m/s"2 |[Meridional Wind Tendency due to Shapiro Filter

94 Chapter 2. Discretization and Algorithm

MITgcm Documentation, Release 1.0

2.21 Nonlinear Viscosities for Large Eddy Simulation

In Large Eddy Simulations (LES), a turbulent closure needs to be provided that accounts for the effects of subgridscale
motions on the large scale. With sufficiently powerful computers, we could resolve the entire flow down to the
molecular viscosity scales (L, ~ lcm). Current computation allows perhaps four decades to be resolved, so the
largest problem computationally feasible would be about 10m. Most oceanographic problems are much larger in
scale, so some form of LES is required, where only the largest scales of motion are resolved, and the subgridscale
effects on the large-scale are parameterized.

To formalize this process, we can introduce a filter over the subgridscale L: u, — %g and L: b — b. This filter
has some intrinsic length and time scales, and we assume that the flow at that scale can be characterized with a single
velocity scale (V') and vertical buoyancy gradient (N?2). The filtered equations of motion in a local Mercator projection
about the gridpoint in question (see Appendix for notation and details of approximation) are:

Du vsind Mg, O Du Du Vu
v s Y e R B 2.151)
Dt Rosinfg Ro 0Oz Dt Dt Re
= ~ . %A = 2
Dv _ usind | Mgoor (Db Dvy V7o (2.152)
Dt Rosinf Ro 0y Dt Dt Re
Do §-F_ (D0 D), v
Dt B2 Dt Dt Re
Db o _(Db_Dby V%
Dt o Dt Dt PrRe
ou 0v 0w
2 =4 = —_— = 2.153
1 <8x+6y) + 5 0 ()

Tildes denote multiplication by cos 6/ cos 6 to account for converging meridians.

The ocean is usually turbulent, and an operational definition of turbulence is that the terms in parentheses (the *eddy’
terms) on the right of (2.151) - (2.153)) are of comparable magnitude to the terms on the left-hand side. The terms
proportional to the inverse of , instead, are many orders of magnitude smaller than all of the other terms in virtually
every oceanic application.

2.21.1 Eddy Viscosity

A turbulent closure provides an approximation to the eddy’ terms on the right of the preceding equations. The simplest
form of LES is just to increase the viscosity and diffusivity until the viscous and diffusive scales are resolved. That is,
we approximate (2.151) - (2.153):

—_— —_—~ ~ o%u
Da _ Du\ Viu oF (2.154)
Dt ﬁt Reh Rev
Div _ Dv NL%Jrg? (2.155)
Dt Dt) Ren Re,

2.21. Nonlinear Viscosities for Large Eddy Simulation 95

MITgcm Documentation, Release 1.0

R _— . OQE
Dw _Duw\ Viw oF (2.156)
Dt Dt Reyp, Re,

AW T =

Dt Dt) PrRe, ' PrRe,

2.21.1.1 Reynolds-Number Limited Eddy Viscosity

One way of ensuring that the gridscale is sufficiently viscous (i.e., resolved) is to choose the eddy viscosity Ay, so that
the gridscale horizontal Reynolds number based on this eddy viscosity, Rey,, is O(1). That is, if the gridscale is to be
viscous, then the viscosity should be chosen to make the viscous terms as large as the advective ones. Bryan et al.
(1975) [BMP75] notes that a computational mode is squelched by using Re;, <2.

MITgcm users can select horizontal eddy viscosities based on Rey, using two methods. 1) The user may estimate the
velocity scale expected from the calculation and grid spacing and set viscAh to satisfy Re;, < 2. 2) The user may
use viscAhReMax, which ensures that the viscosity is always chosen so that Rej, < viscAhReMax. This last option
should be used with caution, however, since it effectively implies that viscous terms are fixed in magnitude relative to
advective terms. While it may be a useful method for specifying a minimum viscosity with little effort, tests Bryan et
al. (1975) [BMP75] have shown that setting viscAhReMax =2 often tends to increase the viscosity substantially over
other more ’physical’ parameterizations below, especially in regions where gradients of velocity are small (and thus
turbulence may be weak), so perhaps a more liberal value should be used, e.g. viscAhReMax =10.

While it is certainly necessary that viscosity be active at the gridscale, the wavelength where dissipation of energy or
enstrophy occurs is not necessarily L = Ay /U. In fact, it is by ensuring that either the dissipation of energy in a 3-d
turbulent cascade (Smagorinsky) or dissipation of enstrophy in a 2-d turbulent cascade (Leith) is resolved that these
parameterizations derive their physical meaning.

2.21.1.2 Vertical Eddy Viscosities

Vertical eddy viscosities are often chosen in a more subjective way, as model stability is not usually as sensitive to
vertical viscosity. Usually the observed’ value from finescale measurements is used (e.g. viscArx 1 x 1074m?2/s).
However, Smagorinsky (1993) [Sma93] notes that the Smagorinsky parameterization of isotropic turbulence implies
a value of the vertical viscosity as well as the horizontal viscosity (see below).

2.21.1.3 Smagorinsky Viscosity

Some suggest (see Smagorinsky 1963 [Sma63]; Smagorinsky 1993 [Sma93]) choosing a viscosity that depends on the
resolved motions. Thus, the overall viscous operator has a nonlinear dependence on velocity. Smagorinsky chose his
form of viscosity by considering Kolmogorov’s ideas about the energy spectrum of 3-d isotropic turbulence.

Kolmogorov supposed that energy is injected into the flow at large scales (small k) and is ’cascaded’ or transferred
conservatively by nonlinear processes to smaller and smaller scales until it is dissipated near the viscous scale. By
setting the energy flux through a particular wavenumber £, €, to be a constant in k, there is only one combination
of viscosity and energy flux that has the units of length, the Kolmogorov wavelength. It is L.(v) oc me~1/4y3/4
(the 7 stems from conversion from wavenumber to wavelength). To ensure that this viscous scale is resolved in a
numerical model, the gridscale should be decreased until L.(v) > L (so-called Direct Numerical Simulation, or
DNS). Alternatively, an eddy viscosity can be used and the corresponding Kolmogorov length can be made larger than

the gridscale, L(Ay,) oc me~1/ 4Ai/ * (for Large Eddy Simulation or LES).

There are two methods of ensuring that the Kolmogorov length is resolved in MITgecm. 1) The user can estimate
the flux of energy through spectral space for a given simulation and adjust grid spacing or viscAh to ensure that

96 Chapter 2. Discretization and Algorithm

http://mitgcm.org/lxr/ident/MITgcm?_i=viscAh
http://mitgcm.org/lxr/ident/MITgcm?_i=viscAhReMax
http://mitgcm.org/lxr/ident/MITgcm?_i=viscAhReMax
http://mitgcm.org/lxr/ident/MITgcm?_i=viscAhReMax
http://mitgcm.org/lxr/ident/MITgcm?_i=viscAhReMax
http://mitgcm.org/lxr/ident/MITgcm?_i=viscAr
http://mitgcm.org/lxr/ident/MITgcm?_i=viscAh

MITgcm Documentation, Release 1.0

L.(Ay) > L; 2) The user may use the approach of Smagorinsky with viscC2Smag, which estimates the energy flux at
every grid point, and adjusts the viscosity accordingly.

Smagorinsky formed the energy equation from the momentum equations by dotting them with velocity. There are
some complications when using the hydrostatic approximation as described by Smagorinsky (1993) /Sma93]. The
positive definite energy dissipation by horizontal viscosity in a hydrostatic flow is #D?, where D is the deformation
rate at the viscous scale. According to Kolmogorov’s theory, this should be a good approximation to the energy flux
at any wavenumber ¢ ~ vD?. Kolmogorov and Smagorinsky noted that using an eddy viscosity that exceeds the
molecular value v should ensure that the energy flux through viscous scale set by the eddy viscosity is the same as

it would have been had we resolved all the way to the true viscous scale. That is, € = ApsmagD . If we use this
approximation to estimate the Kolmogorov viscous length, then

_ —2. ——1/2
Le(Ansmag) o e VAN~ m(AnsmagD)AL = AN2 DY 2.157)
To make L.(Apsmag) scale with the gridscale, then
iscC2Smag \ > ., —
AnSmag = (V' = g) 12D (2.158)

Where the deformation rate appropriate for hydrostatic flows with shallow-water scaling is

— — 2 — — 2
D= (220 (9, 0v (2.159)
or Oy dy Oz
The coefficient viscC2Smag is what an MITgcm user sets, and it replaces the proportionality in the Kolmogorov length

with an equality. Others (Griffies and Hallberg, 2000 / GH0O0]) suggest values of viscC2Smag from 2.2 to 4 for oceanic
problems. Smagorinsky (1993) [Sma93] shows that values from 0.2 to 0.9 have been used in atmospheric modeling.

Smagorinsky (1993) [Sma93] shows that a corresponding vertical viscosity should be used:

; 2 — 2 — 2
Aysmag = viscC2Smag 772 ou n ov (2.160)
™ 0z 0z

This vertical viscosity is currently not implemented in MITgcm.

2.21.1.4 Leith Viscosity

Leith (1968, 1996) [Lei68] [Lei96] notes that 2-d turbulence is quite different from 3-d. In two-dimensional turbu-
lence, energy cascades to larger scales, so there is no concern about resolving the scales of energy dissipation. Instead,
another quantity, enstrophy, (which is the vertical component of vorticity squared) is conserved in 2-d turbulence, and
it cascades to smaller scales where it is dissipated.

Following a similar argument to that above about energy flux, the enstrophy flux is estimated to be equal to the
positive-definite gridscale dissipation rate of enstrophy 1 ~ A r.citn|Vws|?. By dimensional analysis, the enstrophy-

dissipation scale is L,,(Ah Leith) X WA;Lfm-t hn_l/ 6. Thus, the Leith-estimated length scale of enstrophy-dissipation
and the resulting eddy viscosity are

Ly(Anreitn) < 7TAllz/L2ez'th’7_l/6 = ﬂ—A}Ligeith|vw3|_l/3 (2.161)

2.21. Nonlinear Viscosities for Large Eddy Simulation 97

http://mitgcm.org/lxr/ident/MITgcm?_i=viscC2Smag
http://mitgcm.org/lxr/ident/MITgcm?_i=viscC2Smag
http://mitgcm.org/lxr/ident/MITgcm?_i=viscC2Smag

MITgcm Documentation, Release 1.0

viscC2Leith\
o= (5

LV (2.162)

o (05 ou\l> [0 /05 oa\l’
_ . [|2 (9v _0Ou 9 (9v _du (2.163)
W?’"\/{ax@w ayﬂ *[ay(ax 6y>}

2.21.1.5 Modified Leith Viscosity

The argument above for the Leith viscosity parameterization uses concepts from purely 2-dimensional turbulence,
where the horizontal flow field is assumed to be non-divergent. However, oceanic flows are only quasi-two dimen-
sional. While the barotropic flow, or the flow within isopycnal layers may behave nearly as two-dimensional turbu-
lence, there is a possibility that these flows will be divergent. In a high-resolution numerical model, these flows may
be substantially divergent near the grid scale, and in fact, numerical instabilities exist which are only horizontally
divergent and have little vertical vorticity. This causes a difficulty with the Leith viscosity, which can only respond to
buildup of vorticity at the grid scale.

MITgcem offers two options for dealing with this problem. 1) The Smagorinsky viscosity can be used instead of
Leith, or in conjunction with Leith — a purely divergent flow does cause an increase in Smagorinsky viscosity; 2) The
viscC2LeithD parameter can be set. This is a damping specifically targeting purely divergent instabilities near the
gridscale. The combined viscosity has the form:

. RN .) 6
ApLeith = LS\/<V|SCC7T2LGIH]) |Vws|? + (\/lscC27Ir_chhD> |VV - a2 (2.164)

— — -2 - — 2
_ o (ou Ov o (ou O
P o B) o (ou oV (2.165)
IV~ anl \/{317 <5w - 8@/)] " {ay (3:13 - ay)}

Whether there is any physical rationale for this correction is unclear, but the numerical consequences are good. The
divergence in flows with the grid scale larger or comparable to the Rossby radius is typically much smaller than the
vorticity, so this adjustment only rarely adjusts the viscosity if viscC2LeithD = viscC2Leith. However, the rare regions
where this viscosity acts are often the locations for the largest vales of vertical velocity in the domain. Since the CFL
condition on vertical velocity is often what sets the maximum timestep, this viscosity may substantially increase
the allowable timestep without severely compromising the verity of the simulation. Tests have shown that in some
calculations, a timestep three times larger was allowed when viscC2LeithD = viscC2Leith.

2.21.1.6 Courant-Freidrichs—Lewy Constraint on Viscosity

Whatever viscosities are used in the model, the choice is constrained by gridscale and timestep by the
Courant—Freidrichs—-Lewy (CFL) constraint on stability:

LQ
M IAL
L4
<
A= 2N

A

The viscosities may be automatically limited to be no greater than these values in MITgcm by specifying viscAhGrid-
Max < 1 and viscA4GridMax < 1. Similarly-scaled minimum values of viscosities are provided by viscAhGridMin
and viscA4GridMin, which if used, should be set to values < 1. L is roughly the gridscale (see below).

98 Chapter 2. Discretization and Algorithm

http://mitgcm.org/lxr/ident/MITgcm?_i=viscC2LeithD
http://mitgcm.org/lxr/ident/MITgcm?_i=viscC2LeithD
http://mitgcm.org/lxr/ident/MITgcm?_i=viscC2Leith
http://mitgcm.org/lxr/ident/MITgcm?_i=viscC2LeithD
http://mitgcm.org/lxr/ident/MITgcm?_i=viscC2Leith
http://mitgcm.org/lxr/ident/MITgcm?_i=viscAhGridMax
http://mitgcm.org/lxr/ident/MITgcm?_i=viscAhGridMax
http://mitgcm.org/lxr/ident/MITgcm?_i=viscA4GridMax
http://mitgcm.org/lxr/ident/MITgcm?_i=viscAhGridMin
http://mitgcm.org/lxr/ident/MITgcm?_i=viscA4GridMin

MITgcm Documentation, Release 1.0

Following Griffies and Hallberg (2000) /GHOO], we note that there is a factor of Ax?/8 difference between the
harmonic and biharmonic viscosities. Thus, whenever a non-dimensional harmonic coefficient is used in the MITgcm
(e.g. viscAhGridMax < 1), the biharmonic equivalent is scaled so that the same non-dimensional value can be used
(e.g. viscA4GridMax < 1).

2.21.1.7 Biharmonic Viscosity

Holland (1978) [Hol78] suggested that eddy viscosities ought to be focused on the dynamics at the grid scale, as larger
motions would be "resolved’. To enhance the scale selectivity of the viscous operator, he suggested a biharmonic eddy
viscosity instead of a harmonic (or Laplacian) viscosity:

= —_—_ ~ 8%u
Du _Du\ -Vyu gt (2.166)
Dt E Rey Re,

(Dz”; D{)> L Vi, =

Dt Dt Rey Re,

Dw Dw\ -Viw 2%
r— ~ — + —_—
Dt Dt Rey Re,

Db Db\ _ -vib 2%
Dt Di) PrRe; PrRe,
Griffies and Hallberg (2000) [GHOO] propose that if one scales the biharmonic viscosity by stability considerations,

then the biharmonic viscous terms will be similarly active to harmonic viscous terms at the gridscale of the model, but
much less active on larger scale motions. Similarly, a biharmonic diffusivity can be used for less diffusive flows.

In practice, biharmonic viscosity and diffusivity allow a less viscous, yet numerically stable, simulation than harmonic
viscosity and diffusivity. However, there is no physical rationale for such operators being of leading order, and more
boundary conditions must be specified than for the harmonic operators. If one considers the approximations of (2.154)
- (2.157) and (2.166) - (2.167) to be terms in the Taylor series expansions of the eddy terms as functions of the large-
scale gradient, then one can argue that both harmonic and biharmonic terms would occur in the series, and the only
question is the choice of coefficients. Using biharmonic viscosity alone implies that one zeros the first non-vanishing
term in the Taylor series, which is unsupported by any fluid theory or observation.

Nonetheless, MITgcm supports a plethora of biharmonic viscosities and diffusivities, which are controlled with pa-
rameters named similarly to the harmonic viscosities and diffusivities with the substitution h — 4 in the MITgcm
parameter name. MITgcm also supports biharmonic Leith and Smagorinsky viscosities:

. 2 14
AdSmag = (\/lscC45mag> L p| (2.167)
: T 8
5 . . 6 . - 6
A4Leith:% (V'SCC:Le'th) Va2 + ("'scmﬂLe'thD) VYV -2 (2.168)

However, it should be noted that unlike the harmonic forms, the biharmonic scaling does not easily relate to whether
energy-dissipation or enstrophy-dissipation scales are resolved. If similar arguments are used to estimate these scales
and scale them to the gridscale, the resulting biharmonic viscosities should be:

2.21. Nonlinear Viscosities for Large Eddy Simulation 99

http://mitgcm.org/lxr/ident/MITgcm?_i=viscAhGridMax
http://mitgcm.org/lxr/ident/MITgcm?_i=viscA4GridMax

MITgcm Documentation, Release 1.0

viscC4Smag
™

5
A4Smag =) L5|Vzﬁh| (2169)

. 12 .) 12
Ayreith = L6\/<VISCO4Le'th) [V2ws|? + (M) |V2V - 1y, |2 (2.170)
™ Vs

Thus, the biharmonic scaling suggested by Griffies and Hallberg (2000) /GHOO] implies:

|D| o< L|V?iy|
|Va@s| oc L|V2@s|

It is not at all clear that these assumptions ought to hold. Only the Griffies and Hallberg (2000) /GHOO] forms are
currently implemented in MITgcm.

2.21.1.8 Selection of Length Scale

Above, the length scale of the grid has been denoted L. However, in strongly anisotropic grids, L, and L, will be
quite different in some locations. In that case, the CFL condition suggests that the minimum of L, and L, be used. On
the other hand, other viscosities which involve whether a particular wavelength is ’resolved’ might be better suited to
use the maximum of L, and L,,. Currently, MITgcm uses useAreaViscLength to select between two options. If false,
the geometric mean of Li and Li is used for all viscosities, which is closer to the minimum and occurs naturally in
the CFL constraint. If useAreaViscLength is true, then the square root of the area of the grid cell is used.

2.21.2 Mercator, Nondimensional Equations

The rotating, incompressible, Boussinesq equations of motion (Gill, 1982) /Gil82] on a sphere can be written in
Mercator projection about a latitude 6y and geopotential height z = r — ry. The nondimensional form of these
equations is:

Di ¥sin om AFr’Mp, cosf Fr’ Mpoiw | Rok - VZu
Ro=t _ My, 2T 4 AT R0 COST, 2.171
°Dt sin 0 +Mr or + 4 sin B v r/H * Re ()
Do asinf on pRotan@(a? +32) Fr’Mpg,ow Roy - Vu
Ro2Y Mp 97— _ 2.172
°Dt * sin 6y * o by r/L r/H + Re ()
= 2052 4 52 2\25 2
Fr2A2%—b+a—7T—)\COt90u:)\M (@*+v%) FreA?z-Viu 2.173)
Dt 0z MRo MRO(T/L) Re

Db w— V2b

Dt ~ PrRe

ou 00 ow

2

gu Ovy oW _ 2.174
a (8:10 + c')y) + 0z ()

100 Chapter 2. Discretization and Algorithm

http://mitgcm.org/lxr/ident/MITgcm?_i=useAreaViscLength
http://mitgcm.org/lxr/ident/MITgcm?_i=useAreaViscLength

MITgcm Documentation, Release 1.0

Where

_ cos fy oo u* 5= v*

T cosO’ Vo Vu
8 8 FI‘2MR 8
=92Qsinfy, — =p? | a— +0— Oy
Jo=20simbo, - 755 = (“ax+“ay> T TRe o2

2 /
r r cos 6 do r—ro
= — 7 = — =)\
v=pocosh v L/l90 cos0 L
L V foMRo
t"=t—, b =0
Vv’ A
Fr’ AM
7 =7V foLMpo, w* = wV ——fo
Ro
v
Ro=——, Mg, = max[1,Ro]
Jfo

\%4 L v

= — =—, Pr=-

N)L’ R v’ 3 K

Dimensional variables are denoted by an asterisk where necessary. If we filter over a grid scale typical for ocean
models:

Im < L < 100km

0.0001 < A <1

0.00lm/s < V < 1 m/s

fo < 0.0001 s !

0.0ls' < N <0.0001s !

these equations are very well approximated by

RoT = ool a7 = —AFYZZ%ZOS% y RV 2.175)
Ro 2 Zlir;f + Rog—z - R;ve% (2.176)
Frz)\2% b % _ M}\C;Rioﬁ . FTQA;ZQ“’ 2.177)

2 (gz n ZS) + 2 (2.179)

2 2 2
V2z(8+8+ 9 >

Neglecting the non-frictional terms on the right-hand side is usually called the ’traditional” approximation. It is appro-
priate, with either large aspect ratio or far from the tropics. This approximation is used here, as it does not affect the
form of the eddy stresses which is the main topic. The frictional terms are preserved in this approximate form for later
comparison with eddy stresses.

2.21. Nonlinear Viscosities for Large Eddy Simulation 101

MITgcm Documentation, Release 1.0

102 Chapter 2. Discretization and Algorithm

CHAPTER 3

Getting Started with MITgem

This chapter is divided into two main parts. The first part, which is covered in sections Section 3.1 through Section
3.6, contains information about how to download, build and run the MITgcm. The second part, covered in Section 4,
contains a set of step-by-step tutorials for running specific pre-configured atmospheric and oceanic experiments.

We believe the best way to familiarize yourself with the model is to run the case study examples provided in the
MITgem repository. Information is also provided here on how to customize the code when you are ready to try
implementing the configuration you have in mind. The code and algorithm are described more fully in Section 2 and
Section 6 and chapters thereafter.

3.1 Where to find information

There is a web-archived support mailing list for the model that you can email at MITgcm-support@mitgem.org once
you have subscribed.

To sign up (subscribe) for the mailing list (highly recommended), click here

To browse through the support archive, click here

3.2 Obtaining the code

The MITgcem code and documentation are under continuous development and we generally recommend that one
downloads the latest version of the code. You will need to decide if you want to work in a “git-aware” environment
(Method 1) or with a one-time “stagnant” download (Method 2). We generally recommend method 1, as it is more
flexible and allows your version of the code to be regularly updated as MITgcm developers check in bug fixes and new
features. However, this typically requires at minimum a rudimentary understanding of git in order to make it worth
one’s while.

Periodically we release an official checkpoint (or “tag”). We recommend one download the latest code, unless there
are reasons for obtaining a specific checkpoint (e.g. duplicating older results, collaborating with someone using an
older release, etc.)

103

mailto:MITgcm-support@mitgcm.org
http://mailman.mitgcm.org/mailman/listinfo/mitgcm-support/
http://mailman.mitgcm.org/pipermail/mitgcm-support/

MITgcm Documentation, Release 1.0

3.2.1 Method 1

This section describes how to download git-aware copies of the repository. In a terminal window, cd to the directory
where you want your code to reside. Type:

% git clone https://github.com/MITgcm/MITgcm.git

This will download the latest available code. If you now want to revert this code to a specific checkpoint release, first
cd into the MITgem directory you just downloaded, then type git checkout checkpointXXX where XXX is
the checkpoint version.

Alternatively, if you prefer to use ssh keys (say for example, you have a firewall which won’t allow a https download),
type:

% git clone git@github.com:MITgcm/MITgcm.git

You will need a GitHub account for this, and will have to generate a ssh key though your GitHub account user settings.

The fully git-aware download is over several hundred MB, which is considerable if one has limited internet download
speed. In comparison, the one-time download zip file (Method 2, below) is order 100MB. However, one can obtain
a truncated, yet still git-aware copy of the current code by adding the option ——depth=1 to the git clone command
above; all files will be present, but it will not include the full git history. However, the repository can be updated going
forward.

3.2.2 Method 2

This section describes how to do a one-time download of the MITgem, NOT git-aware. In a terminal window, cd to
the directory where you want your code to reside. To obtain the current code, type:

)

% wget https://github.com/MITgcm/MITgcm/archive/master.zip

For specific checkpoint release XXX, instead type:

)

% wget https://github.com/MITgcm/MITgem/archive/checkpointXXX.zip

3.3 Updating the code

There are several different approaches one can use to obtain updates to the MITgcm; which is best for you depends a
bit on how you intend to use the MITgcm and your knowledge of git (and/or willingness to learn). Below we outline
three suggested update pathways:

1. Fresh Download of the MITgcm

This approach is the most simple, and virtually foolproof. Whether you downloaded the code from a static zip file
(Method 2) or used the git clone command (Method 1), create a new directory and repeat this procedure to download a
current copy of the MITgem. Say for example you are starting a new research project, this would be a great time to grab
the most recent code repository and keep this new work entirely separate from any past simulations. This approach
requires no understanding of git, and you are free to make changes to any files in the MIT repo tree (although we
generally recommend that you avoid doing so, instead working in new subdirectories or on separate scratch disks as
described in Section 3.5.1, for example).

2. Using git pull to update the (unmodified) MITgcm repo tree

If you have downloaded the code through a git clone command (Method I above), you can incorporate any changes to
the source code (including any changes to any files in the MITgcm repository, new packages or analysis routines, etc.)

104 Chapter 3. Getting Started with MITgcm

MITgcm Documentation, Release 1.0

that may have occurred since your original download. There is a simple command to bring all code in the repository
to a ‘current release’ state. From the MITgcm top directory or any of its subdirectories, type:

)

% git pull

and all files will be updated to match the current state of the code repository, as it exists at GitHub. (Note: if you plan
to contribute to the MITgcem and followed the steps to download the code as described in Section 5, you will need to
type git pull upstreaminstead.)

This update pathway is ideal if you are in the midst of a project and you want to incorporate new MITgcm features
into your executable(s), or take advantage of recently added analysis utilties, etc. After the git pull, any changes in
model source code and include files will be updated, so you can repeat the build procedure (Section 3.5) and you will
include all these new features in your new executable.

Be forewarned, this will only work if you have not modified ANY of the files in the MITgcm repository (adding new
files is ok; also, all verification run subdirectories build and run are also ignored by git). If you have modified files
and the git pull fails with errors, there is no easy fix other than to learn something about git (continue reading. . .)

3. Fully embracing the power of git!

Git offers many tools to help organize and track changes in your work. For example, one might keep separate projects
on different branches, and update the code separately (using git pull) on these separate branches. You can even
make changes to code in the MIT repo tree; when git then tries to update code from upstream (see Figure 5.1), it
will notify you about possible conflicts and even merge the code changes together if it can. You can also use git
commit to help you track what you are modifying in your simulations over time. If you’re planning to submit a pull
request to include your changes, you should read the contributing guide in Section 5, and we suggest you do this model
development in a separate, fresh copy of the code. See Section 5.2 for more information and how to use git effectively
to manage your workflow.

3.4 Model and directory structure

The “numerical” model is contained within a execution environment support wrapper. This wrapper is designed to
provide a general framework for grid-point models; MITgcm is a specific numerical model that makes use of this
framework (see chapWrapper for additional detail). Under this structure, the model is split into execution environment
support code and conventional numerical model code. The execution environment support code is held under the
eesupp directory. The grid point model code is held under the model directory. Code execution actually starts in
the eesupp routines and not in the model routines. For this reason the top-level MAIN.F is in the eesupp/src
directory. In general, end-users should not need to worry about the wrapper support code. The top-level routine for
the numerical part of the code is in model/src/THE_MODEL_MAIN.F. Here is a brief description of the directory
structure of the model under the root tree.

* model: this directory contains the main source code. Also subdivided into two subdirectories inc (includes
files) and src (source code).

eesupp: contains the execution environment source code. Also subdivided into two subdirectories inc and
src.

pkg: contains the source code for the packages. Each package corresponds to a subdirectory. For example,
gmredi contains the code related to the Gent-McWilliams/Redi scheme, seaice the code for a dynamic
seaice model which can be coupled to the ocean model. The packages are described in detail in Section 8].

doc: contains the MITgecm documentation in reStructured Text (rst) format.

tools: this directory contains various useful tools. For example, genmake? is a script written in bash that
should be used to generate your makefile. The subdirectory build_options contains ‘optfiles’ with the
compiler options for many different compilers and machines that can run MITgem (see Section 3.5.2.1). This

3.4. Model and directory structure 105

https://github.com/MITgcm/MITgcm.git

MITgcm Documentation, Release 1.0

directory also contains subdirectories adjoint and OAD_support that are used to generate the tangent linear
and adjoint model (see details in Section 7).

* utils: this directory contains various utilities. The mat 1ab subdirectory contains matlab scripts for reading
model output directly into matlab. The subdirectory python contains similar routines for python. scripts
contains C-shell post-processing scripts for joining processor-based and tiled-based model output.

e verification: this directory contains the model examples. See Section 4.
* jobs: contains sample job scripts for running MITgem.
* lsopt: Line search code used for optimization.

* optim: Interface between MITgcm and line search code.

3.5 Building the code

To compile the code, we use the make program. This uses a file (Make f1i1e) that allows us to pre-process source files,
specify compiler and optimization options and also figures out any file dependencies. We supply a script (genmake?2),
described in section Section 3.5.2, that automatically creates the Makefile for you. You then need to build the
dependencies and compile the code.

As an example, assume that you want to build and run experiment verification/exp2. Let’s build the code in
verification/exp2/build:

)

% cd verification/exp2/build

First, build the Makefile:

% ../../../tools/genmake2 -mods ../code

The -mods command line option tells genmake?2 to override model source code with any files in the directory
. ./code/. This and additional genmake2 command line options are described more fully in Section 3.5.2.2.

On many systems, the genmake2 program will be able to automatically recognize the hardware, find compilers and
other tools within the user’s path (“echo S$PATH”), and then choose an appropriate set of options from the files
(“optfiles”) contained in the tools/build_options directory. Under some circumstances, a user may have to
create a new optfile in order to specify the exact combination of compiler, compiler flags, libraries, and other options
necessary to build a particular configuration of MITgem. In such cases, it is generally helpful to peruse the existing
optfiles and mimic their syntax. See Section 3.5.2.1.

The MITgcem developers are willing to provide help writing or modifing optfiles. And we encourage users to ask for
assistance or post new optfiles (particularly ones for new machines or architectures) through the GitHub issue tracker
or email the MITgcm-support@mitgecm.org list.

To specify an optfile to genmake?2, the command line syntax is:

% ../../../tools/genmake2 -mods ../code -of /path/to/optfile

Once a Makefile has been generated, we create the dependencies with the command:

% make depend

This modifies the Makefile by attaching a (usually, long) list of files upon which other files depend. The purpose
of this is to reduce re-compilation if and when you start to modify the code. The make depend command also
creates links from the model source to this directory, except for links to those files in the specified —mods directory.
IMPORTANT NOTE: Editing the source code files in the build directory will not edit a local copy (since these are
just links) but will edit the original files in model/src (or model/inc) or in the specified ~mods directory. While

106 Chapter 3. Getting Started with MITgcm

https://github.com/MITgcm/MITgcm/issues
mailto:MITgcm-support@mitgcm.org

MITgcm Documentation, Release 1.0

the latter might be what you intend, editing the master copy in model/src is usually NOT what was intended and
may cause grief somewhere down the road. Rather, if you need to add to the list of modified source code files, place a
copy of the file(s) to edit in the -mods directory, make the edits to these —mods directory files, go back to the build
directory and type make Clean, and then re-build the makefile (these latter steps critical or the makefile will not
link to to this newly edited file).

It is important to note that the make depend stage will occasionally produce warnings or errors if the dependency
parsing tool is unable to find all of the necessary header files (e.g., netcdf.inc). In some cases you may need to
obtain help from your system administrator to locate these files.

Next, one can compile the code using:

% make

The make command creates an executable called mitgcmuv. Additional make “targets” are defined within the
makefile to aid in the production of adjoint and other versions of MITgcm. On computers with multiple processor
cores or shared multi-processor (a.k.a. SMP) systems, the build process can often be sped up appreciably using the
command:

[}

% make -3 2

where the “2” can be replaced with a number that corresponds to the number of cores (or discrete CPUs) available.
In addition, there are several housekeeping make clean options that might be useful:

* make clean removes files that make generates (e.g., *.0 and *.f files)

* make Clean removes files and links generated by make and make depend

* make CLEAN removes pretty much everything, including any executibles and output from genmake?2

Now you are ready to run the model. General instructions for doing so are given in section Section 3.6.

3.5.1 Building/compiling the code elsewhere

In the example above (Section 3.5) we built the executable in the build directory of the experiment. Model object
files and output data can use up large amounts of disk space so it is often preferable to operate on a large scratch disk.
Here, we show how to configure and compile the code on a scratch disk, without having to copy the entire source tree.
The only requirement to do so is you have genmake?2 in your path, or you know the absolute path to genmake?2.

Assuming the model source is in ~/MITgcm, then the following commands will build the model in /scratch/
exp2-runl:

o\

cd /scratch/exp2-runl

~/MITgcm/tools/genmake2 -rootdir ~/MITgcm -mods ~/MITgcm/verification/exp2/code
make depend

make

o° oo

o\

Note the use of the command line option —rootdir to tell genmake2 where to find the MITgcm directory tree. In
general, one can compile the code in any given directory by following this procedure.

3.5.2 Using genmake2

This section describes further details and capabilities of genmake?2 (located in the tools directory), the MITgecm
tool used to generate a Makefile. genmake? is a shell script written to work with all “sh”—compatible shells including
bash v1, bash v2, and Bourne (like many unix tools, there is a help option that is invoked thru genmake -h).
genmake?2 parses information from the following sources:

3.5. Building the code 107

MITgcm Documentation, Release 1.0

* agenmake_local file if one is found in the current directory
* command-line options
* an “options file” as specified by the command-line option —of /path/to/filename

* apackages.conf file (if one is found) with the specific list of packages to compile. The search path for file
packages.conf is first the current directory, and then each of the -mods directories in the given order (see
here).

3.5.2.1 Optfiles in tools/build_options directory:

The purpose of the optfiles is to provide all the compilation options for particular “platforms” (where “platform”
roughly means the combination of the hardware and the compiler) and code configurations. Given the combi-
nations of possible compilers and library dependencies (e.g., MPI and NetCDF) there may be numerous optfiles
available for a single machine. The naming scheme for the majority of the optfiles shipped with the code is
OS_HARDWARE_COMPILER where

OS is the name of the operating system (generally the lower-case output of a linux terminal uname command)

HARDWARE is a string that describes the CPU type and corresponds to output from a uname -m command. Some
common CPU types:

amd64 is for x86_64 systems (most common, including AMD and Intel 64-bit CPUs)
ia64 is for Intel IA64 systems (eg. Itanium, Itanium2)
ppc is for (old) Mac PowerPC systems

COMPILER is the compiler name (generally, the name of the FORTRAN executable)

In many cases, the default optfiles are sufficient and will result in usable Makefiles. However, for some machines or
code configurations, new optfiles must be written. To create a new optfile, it is generally best to start with one of the
defaults and modify it to suit your needs. Like genmake2, the optfiles are all written using a simple sh—compatible
syntax. While nearly all variables used within genmake?2 may be specified in the optfiles, the critical ones that should
be defined are:

FC the FORTRAN compiler (executable) to use

DEFINES the command-line DEFINE options passed to the compiler
CPP the C pre-processor to use

NOOPTFLAGS options flags for special files that should not be optimized

For example, the optfile for a typical Red Hat Linux machine (amd64 architecture) using the GCC (g77) compiler is

FC=g77

DEFINES='-D_BYTESWAPIO —-DWORDLENGTH=4"

CPP='"cpp -traditional -P'

NOOPTFLAGS="-00"

For IEEE, use the "-ffloat-store" option

if test "xSIEEE" = x ; then
FFLAGS='-Wimplicit -Wunused -Wuninitialized'
FOPTIM='-03 -malign-double —-funroll-loops'

else
FFLAGS='-Wimplicit -Wunused -ffloat-store'
FOPTIM='-00 -malign-double'’

fi

108 Chapter 3. Getting Started with MITgcm

MITgcm Documentation, Release 1.0

If you write an optfile for an unrepresented machine or compiler, you are strongly encouraged to submit the optfile
to the MITgcm project for inclusion. Please submit the file through the GitHub issue tracker or email the MITgcm-
support@mitgcm.org list.

3.5.2.2 Command-line options:

In addition to the optfiles, genmake?2 supports a number of helpful command-line options. A complete list of these
options can be obtained by:

)

% genmake2 -h

The most important command-line options are:
-optfile /path/to/file specifies the optfile that should be used for a particular build.

If no optfile is specified (either through the command line or the MITGCM_OPTFILE environment variable),
genmake2 will try to make a reasonable guess from the list provided in tools/build_options. The
method used for making this guess is to first determine the combination of operating system and hardware (eg.
“linux_amd64”) and then find a working FORTRAN compiler within the user’s path. When these three items
have been identified, genmake2 will try to find an optfile that has a matching name.

-mods ’‘dirl dir2 dir3 ...’ specifies a list of directories containing “modifications”. These directories
contain files with names that may (or may not) exist in the main MITgcm source tree but will be overridden by
any identically-named sources within the ~-mods directories.

The order of precedence for this “name-hiding” is as follows:
* “mods” directories (in the order given)
» Packages either explicitly specified or provided by default (in the order given)
* Packages included due to package dependencies (in the order that that package dependencies are parsed)
* The “standard dirs” (which may have been specified by the “-standarddirs” option)
—oad generates a makefile for a OpenAD build

—-adof /path/to/file specifies the “adjoint” or automatic differentiation options file to be used. The file is
analogous to the optfile defined above but it specifies information for the AD build process.

The default file is located in tools/adjoint_options/adjoint_default and it defines the
“TAF” and “TAMC” compilers. An alternate version is also available at tools/adjoint_options/
adjoint_staf that selects the newer “STAF” compiler. As with any compilers, it is helpful to have their
directories listed in your $PATH environment variable.

-mpi enables certain MPI features (using CPP #define) within the code and is necessary for MPI builds (see
Section 3.5.3).

—omp enables OPENMP code and compiler flag OMPFLAG
—ieee use IEEE numerics (requires support in optfile)

-make /path/to/gmake due to the poor handling of soft-links and other bugs common with the make versions
provided by commercial Unix vendors, GNU make (sometimes called gmake) may be preferred. This option
provides a means for specifying the make executable to be used.

3.5.3 Building with MPI

Building MITgcm to use MPI libraries can be complicated due to the variety of different MPI implementations avail-
able, their dependencies or interactions with different compilers, and their often ad-hoc locations within file systems.

3.5. Building the code 109

https://github.com/MITgcm/MITgcm/issues
mailto:MITgcm-support@mitgcm.org
mailto:MITgcm-support@mitgcm.org

MITgcm Documentation, Release 1.0

For these reasons, its generally a good idea to start by finding and reading the documentation for your machine(s) and,
if necessary, seeking help from your local systems administrator.

The steps for building MITgecm with MPI support are:

1. Determine the locations of your MPI-enabled compiler and/or MPI libraries and put them into an options
file as described in Section 3.5.2.1. One can start with one of the examples in tools/build_options such as
linux_amd64_gfortran or linux_amd64_ifort+impi and then edit it to suit the machine at hand.
You may need help from your user guide or local systems administrator to determine the exact location of the
MPI libraries. If libraries are not installed, MPI implementations and related tools are available including:

¢ Open MPI
* MVAPICH2
 MPICH

¢ Intel MPI

2. Build the code with the genmake2 —mp1i option (see Section 3.5.2.2) using commands such as:

o\

./../../tools/genmake2 -mods=../code -mpi -of=YOUR_OPTFILE
make depend
make

o\

oe

3.6 Running the model

If compilation finished successfully (Section 3.5) then an executable called mitgcmuv will now exist in the local
(build) directory.

To run the model as a single process (i.e., not in parallel) simply type (assuming you are still in the bui 1d directory):

cd ../run

In -s ../input/=*

cp ../build/mitgcmuv .
./mitgcmuv

o\

o° o0 o

Here, we are making a link to all the support data files needed by the MITgcm for this experiment, and then copying
the executable from the the build directory. The ./ in the last step is a safe-guard to make sure you use the local
executable in case you have others that might exist in your $PATH. The above command will spew out many lines of
text output to your screen. This output contains details such as parameter values as well as diagnostics such as mean
kinetic energy, largest CFL number, etc. It is worth keeping this text output with the binary output so we normally
re-direct the st dout stream as follows:

% ./mitgcmuv > output.txt

In the event that the model encounters an error and stops, it is very helpful to include the last few line of this output .
txt file along with the (st derr) error message within any bug reports.

For the example experiments in verification, an example of the output is kept in results/output .txt for
comparison. You can compare your output . t xt with the corresponding one for that experiment to check that your
set-up indeed works. Congratulations!

3.6.1 Running with MPI

Run the code with the appropriate MPI “run” or “exec” program provided with your particular implementation of MPI.
Typical MPI packages such as Open MPI will use something like:

110 Chapter 3. Getting Started with MITgcm

https://github.com/MITgcm/MITgcm/blob/master/tools/build_options
https://www.open-mpi.org/
http:mvapich.cse.ohio-state.edu/
https://www.mpich.org/
https://software.intel.com/en-us/intel-mpi-library/
https://www.open-mpi.org/

MITgcm Documentation, Release 1.0

% mpirun -np 4 ./mitgcmuv

Sightly more complicated scripts may be needed for many machines since execution of the code may be controlled
by both the MPI library and a job scheduling and queueing system such as SLURM, PBS, LoadLeveler, or any of a
number of similar tools. See your local cluster documentation or system administrator for the specific syntax required
to run on your computing facility.

3.6.2 Output files

The model produces various output files and, when using mnc (i.e., NetCDF), sometimes even directories. Depending
upon the I/0 package(s) selected at compile time (either mdsio or mnc or both as determined by code /packages.
conf) and the run-time flags set (in input/data.pkg), the following output may appear. More complete infor-
mation describing output files and model diagnostics is described in chap_diagnosticsio.

3.6.2.1 MDSIO output files

The “traditional” output files are generated by the mdsio package (link to section_mdsio).The mdsio model data are
written according to a “meta/data” file format. Each variable is associated with two files with suffix names .data
and .meta. The .data file contains the data written in binary form (big endian by default). The .meta file is a
“header” file that contains information about the size and the structure of the . data file. This way of organizing the
output is particularly useful when running multi-processors calculations.

At a minimum, the instantaneous “state” of the model is written out, which is made of the following files:
* U.00000nIter - zonal component of velocity field (m/s and positive eastward).
* V.00000nIter - meridional component of velocity field (m/s and positive northward).

* W.00000nIter - vertical component of velocity field (ocean: m/s and positive upward, atmosphere: Pa/s and
positive towards increasing pressure i.e., downward).

* T.00000nIter - potential temperature (ocean: °C, atmosphere: °K).
* 5.00000nIter - ocean: salinity (psu), atmosphere: water vapor (g/kg).
* Eta.00000nIter - ocean: surface elevation (m), atmosphere: surface pressure anomaly (Pa).

The chain 00000nIter consists of ten figures that specify the iteration number at which the output is written out.
For example, U. 0000000300 is the zonal velocity at iteration 300.

In addition, a “pickup” or “checkpoint” file called:
* pickup.00000nIter

is written out. This file represents the state of the model in a condensed form and is used for restarting the integration
(at the specific iteration number). Some additional packages and parameterizations also produce separate pickup files,

e.g.,
e pickup_cd.00000nIter if the C-D scheme is used (see link to description)
* pickup_seaice.00000nIter if the seaice package is turned on (see link to description)
* pickup_ptracers.00000nIter if passive tracers are included in the simulation (see link to description)

Rolling checkpoint files are the same as the pickup files but are named differently. Their name contain the chain
ckptA or ckptB instead of 00000nIter. They can be used to restart the model but are overwritten every other
time they are output to save disk space during long integrations.

3.6. Running the model 111

MITgcm Documentation, Release 1.0

3.6.2.2 MNC output files

The MNC package (link to section_mnc) is a set of routines written to read, write, and append NetCDF files. Unlike the
mds io output, the mnc—generated output is usually placed within a subdirectory with a name such as mnc_output__
(by default, NetCDF tries to append, rather than overwrite, existing files, so a unique output directory is helpful for
each separate run).

The MNC output files are all in the “self-describing” NetCDF format and can thus be browsed and/or plotted using
tools such as:

e ncdump is a utility which is typically included with every NetCDF install, and converts the NetCDF binaries
into formatted ASCII text files.

* ncview is a very convenient and quick way to plot NetCDF data and it runs on most platforms. Panoply is a
similar alternative.

* Matlab, GrADS, IDL and other common post-processing environments provide built-in NetCDF interfaces.

3.6.3 Looking at the output
3.6.3.1 MATLAB

MDSIO output

The repository includes a few Matlab utilities to read output files written in the mdsio format. The Matlab scripts
are located in the directory utils/matlab under the root tree. The script rdmds.m reads the data. Look at the
comments inside the script to see how to use it.

Some examples of reading and visualizing some output in Matlab:

% matlab
>> H=rdmds ('Depth');
>> contourf (H') ;colorbar;

>> title('Depth of fluid as used by model');

>> eta=rdmds ('Eta',10);
>> imagesc(eta');axis 1ij;colorbar;
>> title('Surface height at iter=10");

>> eta=rdmds ('Eta', [0:10:100]);
>> for n=1:11; imagesc(eta(:,:,n)'");axis ij;colorbar;pause(.5);end

NetCDF

Similar scripts for netCDF output (rdmnc . m) are available and they are described in Section [sec:pkg:mnc].

3.6.3.2 Python

MDSIO output

The repository includes Python scripts for reading the mdsio format under utils/python. The following example
shows how to load in some data:

112 Chapter 3. Getting Started with MITgcm

http://www.unidata.ucar.edu/software/netcdf/
https://www.unidata.ucar.edu/software/netcdf/netcdf-4/newdocs/netcdf/ncdump.html
http://meteora.ucsd.edu/~pierce/ncview_home_page.html
https://www.giss.nasa.gov/tools/panoply/

MITgcm Documentation, Release 1.0

python
import mds

Eta = mds.rdmds ('Eta', itrs=10)

The docstring for mds . rdmds contains much more detail about using this function and the options that it takes.

NetCDF output

The NetCDF output is currently produced with one file per processor. This means the individual tiles need to be
stitched together to create a single NetCDF file that spans the model domain. The script gluemncbig.py in the
utils/python folder can do this efficiently from the command line.

The following example shows how to use the xarray package to read the resulting NetCDF file into python:

python
import xarray as xr

Eta = xr.open_dataset ('Eta.nc')

3.7 Customizing the model configuration

When you are ready to run the model in the configuration you want, the easiest thing is to use and adapt the setup
of the case studies experiment (described in Section 4) that is the closest to your configuration. Then, the amount of
setup will be minimized. In this section, we focus on the setup relative to the “numerical model” part of the code (the
setup relative to the “execution environment” part is covered in the software architecture/wrapper section) and on the
variables and parameters that you are likely to change.

In what follows, the parameters are grouped into categories related to the computational domain, the equations solved
in the model, and the simulation controls.

3.7.1 Parameters: Computational Domain, Geometry and Time-Discretization

Dimensions

The number of points in the X, y, and r directions are represented by the variables sNx, sNy and Nr respec-
tively which are declared and set in the file SIZE.h. (Again, this assumes a mono-processor calculation.
For multiprocessor calculations see the section on parallel implementation.)

Grid

Three different grids are available: cartesian, spherical polar, and curvilinear (which includes the cubed
sphere). The grid is set through the logical variables usingCartesianGrid, usingSphericalPolarGrid, and
usingCurvilinearGrid. In the case of spherical and curvilinear grids, the southern boundary is defined
through the variable ygOrigin which corresponds to the latitude of the southern most cell face (in degrees).
The resolution along the x and y directions is controlled by the 1D arrays delx and dely (in meters in the
case of a cartesian grid, in degrees otherwise). The vertical grid spacing is set through the 1D array delz
for the ocean (in meters) or delp for the atmosphere (in Pa). The variable Ro_Seal.evel represents the
standard position of sea level in “r”” coordinate. This is typically set to O m for the ocean (default value)
and 10° Pa for the atmosphere. For the atmosphere, also set the logical variable groundAtK1 to . TRUE.
which puts the first level (k=1) at the lower boundary (ground).

3.7. Customizing the model configuration 113

http://xarray.pydata.org/
http://mitgcm.org/lxr/ident/MITgcm?_i=sNx
http://mitgcm.org/lxr/ident/MITgcm?_i=sNy
http://mitgcm.org/lxr/ident/MITgcm?_i=Nr
https://github.com/MITgcm/MITgcm/blob/master/model/inc/SIZE.h
http://mitgcm.org/lxr/ident/MITgcm?_i=usingCartesianGrid
http://mitgcm.org/lxr/ident/MITgcm?_i=usingSphericalPolarGrid
http://mitgcm.org/lxr/ident/MITgcm?_i=usingCurvilinearGrid
http://mitgcm.org/lxr/ident/MITgcm?_i=ygOrigin
http://mitgcm.org/lxr/ident/MITgcm?_i=delx
http://mitgcm.org/lxr/ident/MITgcm?_i=dely
http://mitgcm.org/lxr/ident/MITgcm?_i=delz
http://mitgcm.org/lxr/ident/MITgcm?_i=delp
http://mitgcm.org/lxr/ident/MITgcm?_i=Ro_SeaLevel
http://mitgcm.org/lxr/ident/MITgcm?_i=groundAtK1

MITgcm Documentation, Release 1.0

For the cartesian grid case, the Coriolis parameter f is set through the variables fO and beta which cor-
respond to the reference Coriolis parameter (in s~') and g—g(in m~'s™) respectively. If beta is set to a
nonzero value, f0 is the value of f at the southern edge of the domain.

Topography - Full and Partial Cells

The domain bathymetry is read from a file that contains a 2D (x,y) map of depths (in m) for the ocean
or pressures (in Pa) for the atmosphere. The file name is represented by the variable bathyFile. The file
is assumed to contain binary numbers giving the depth (pressure) of the model at each grid cell, ordered
with the x coordinate varying fastest. The points are ordered from low coordinate to high coordinate
for both axes. The model code applies without modification to enclosed, periodic, and double periodic
domains. Periodicity is assumed by default and is suppressed by setting the depths to 0 m for the cells at
the limits of the computational domain (note: not sure this is the case for the atmosphere). The precision
with which to read the binary data is controlled by the integer variable readBinaryPrec which can take
the value 32 (single precision) or 64 (double precision). See the matlab program gendata.m in the
input directories of verification for several tutorial examples (e.g. gendata.m in the barotropic
gyre tutorial) to see how the bathymetry files are generated for the case study experiments.

To use the partial cell capability, the variable hFacMin needs to be set to a value between 0 and 1 (it is set
to 1 by default) corresponding to the minimum fractional size of the cell. For example if the bottom cell
is 500 m thick and hFacMin is set to 0.1, the actual thickness of the cell (i.e. used in the code) can cover
a range of discrete values 50 m apart from 50 m to 500 m depending on the value of the bottom depth (in
bathyFile) at this point.

Note that the bottom depths (or pressures) need not coincide with the models levels as deduced from delz
or delp. The model will interpolate the numbers in bathyFile so that they match the levels obtained from
delz or delp and hFacMin.

(Note: the atmospheric case is a bit more complicated than what is written here. To come soon...)
Time-Discretization

The time steps are set through the real variables deltaTMom and deltaTtracer (in s) which represent the
time step for the momentum and tracer equations, respectively. For synchronous integrations, simply
set the two variables to the same value (or you can prescribe one time step only through the variable
deltaT). The Adams-Bashforth stabilizing parameter is set through the variable abEps (dimensionless).
The stagger baroclinic time stepping can be activated by setting the logical variable staggerTimeStep to
. TRUE..

3.7.2 Parameters: Equation of State

First, because the model equations are written in terms of perturbations, a reference thermodynamic state needs to be
specified. This is done through the 1D arrays tRef and sRef. tRef specifies the reference potential temperature profile
(in °C for the ocean and K for the atmosphere) starting from the level k=1. Similarly, sRef specifies the reference
salinity profile (in ppt) for the ocean or the reference specific humidity profile (in g/kg) for the atmosphere.

The form of the equation of state is controlled by the character variables buoyancyRelation and eosType. buoyan-
cyRelation is set to OCEANIC by default and needs to be set to ATMOSPHERIC for atmosphere simulations. In this
case, ecosType must be set to IDEALGAS. For the ocean, two forms of the equation of state are available: linear (set
eosType to LINEAR) and a polynomial approximation to the full nonlinear equation (set eosType to POLYNOMIAL).
In the linear case, you need to specify the thermal and haline expansion coefficients represented by the variables tAl-
pha (in K™') and sBeta (in ppt™!). For the nonlinear case, you need to generate a file of polynomial coefficients called
POLY3.COEFFS. To do this, use the program utils/knudsen2/knudsen2.f under the model tree (a Makefile is available
in the same directory and you will need to edit the number and the values of the vertical levels in knudsen2.f so that
they match those of your configuration).

There there are also higher polynomials for the equation of state:

114 Chapter 3. Getting Started with MITgcm

http://mitgcm.org/lxr/ident/MITgcm?_i=f0
http://mitgcm.org/lxr/ident/MITgcm?_i=beta
http://mitgcm.org/lxr/ident/MITgcm?_i=beta
http://mitgcm.org/lxr/ident/MITgcm?_i=f0
http://mitgcm.org/lxr/ident/MITgcm?_i=bathyFile
http://mitgcm.org/lxr/ident/MITgcm?_i=readBinaryPrec
https://github.com/MITgcm/MITgcm/blob/master/verification/tutorial_barotropic_gyre/input/gendata.m
http://mitgcm.org/lxr/ident/MITgcm?_i=hFacMin
http://mitgcm.org/lxr/ident/MITgcm?_i=hFacMin
http://mitgcm.org/lxr/ident/MITgcm?_i=bathyFile
http://mitgcm.org/lxr/ident/MITgcm?_i=delz
http://mitgcm.org/lxr/ident/MITgcm?_i=delp
http://mitgcm.org/lxr/ident/MITgcm?_i=bathyFile
http://mitgcm.org/lxr/ident/MITgcm?_i=delz
http://mitgcm.org/lxr/ident/MITgcm?_i=delp
http://mitgcm.org/lxr/ident/MITgcm?_i=hFacMin
http://mitgcm.org/lxr/ident/MITgcm?_i=deltaTMom
http://mitgcm.org/lxr/ident/MITgcm?_i=deltaTtracer
http://mitgcm.org/lxr/ident/MITgcm?_i=deltaT
http://mitgcm.org/lxr/ident/MITgcm?_i=abEps
http://mitgcm.org/lxr/ident/MITgcm?_i=staggerTimeStep
http://mitgcm.org/lxr/ident/MITgcm?_i=tRef
http://mitgcm.org/lxr/ident/MITgcm?_i=sRef
http://mitgcm.org/lxr/ident/MITgcm?_i=tRef
http://mitgcm.org/lxr/ident/MITgcm?_i=sRef
http://mitgcm.org/lxr/ident/MITgcm?_i=buoyancyRelation
http://mitgcm.org/lxr/ident/MITgcm?_i=eosType
http://mitgcm.org/lxr/ident/MITgcm?_i=buoyancyRelation
http://mitgcm.org/lxr/ident/MITgcm?_i=buoyancyRelation
http://mitgcm.org/lxr/ident/MITgcm?_i=eosType
http://mitgcm.org/lxr/ident/MITgcm?_i=eosType
http://mitgcm.org/lxr/ident/MITgcm?_i=eosType
http://mitgcm.org/lxr/ident/MITgcm?_i=tAlpha
http://mitgcm.org/lxr/ident/MITgcm?_i=tAlpha
http://mitgcm.org/lxr/ident/MITgcm?_i=sBeta
https://github.com/MITgcm/MITgcm/blob/master/utils/knudsen2/knudsen2.f
https://github.com/MITgcm/MITgcm/blob/master/utils/knudsen2/knudsen2.f

MITgcm Documentation, Release 1.0

"UNESCO’: The UNESCO equation of state formula of Fofonoff and Millard (1983) /[FRMS83]. This equation of
state assumes in-situ temperature, which is not a model variable; its use is therefore discouraged, and it is only
listed for completeness.

"JMD95Z’: A modified UNESCO formula by Jackett and McDougall (1995) [JM95], which uses the model variable
potential temperature as input. The *Z’ indicates that this equation of state uses a horizontally and temporally
constant pressure pg = —gpoZ.

"JMD95P’ : A modified UNESCO formula by Jackett and McDougall (1995) [JM95], which uses the model variable
potential temperature as input. The *P’ indicates that this equation of state uses the actual hydrostatic pressure
of the last time step. Lagging the pressure in this way requires an additional pickup file for restarts.

"MDJWF'’ : The new, more accurate and less expensive equation of state by McDougall et al. (1983) [MJWFO03]. It
also requires lagging the pressure and therefore an additional pickup file for restarts.

For none of these options an reference profile of temperature or salinity is required.

3.7.3 Parameters: Momentum Equations

In this section, we only focus for now on the parameters that you are likely to change, i.e. the ones relative to forcing
and dissipation for example. The details relevant to the vector-invariant form of the equations and the various advection
schemes are not covered for the moment. We assume that you use the standard form of the momentum equations (i.e.
the flux-form) with the default advection scheme. Also, there are a few logical variables that allow you to turn on/off
various terms in the momentum equation. These variables are called momViscosity, momAdvection, momForcing,
useCoriolis, momPressureForcing, momStepping and metricTerms and are assumed to be set to . TRUE. here. Look
at the file PARAMS.h for a precise definition of these variables.

Initialization

The initial horizontal velocity components can be specified from binary files uVellnitFile and v VellnitFile.
These files should contain 3D data ordered in an (x,y,r) fashion with k=1 as the first vertical level (surface
level). If no file names are provided, the velocity is initialized to zero. The initial vertical velocity
is always derived from the horizontal velocity using the continuity equation, even in the case of non-
hydrostatic simulation (see, e.g., verification/tutorial_deep_convection/input/).

In the case of a restart (from the end of a previous simulation), the velocity field is read from a pickup file
(see section on simulation control parameters) and the initial velocity files are ignored.

Forcing

This section only applies to the ocean. You need to generate wind-stress data into two files zonal WindFile
and meridWindFile corresponding to the zonal and meridional components of the wind stress, respectively
(if you want the stress to be along the direction of only one of the model horizontal axes, you only need to
generate one file). The format of the files is similar to the bathymetry file. The zonal (meridional) stress
data are assumed to be in Pa and located at U-points (V-points). As for the bathymetry, the precision
with which to read the binary data is controlled by the variable readBinaryPrec. See the matlab program
gendata.minthe input directories of verification for several tutorial example (e.g. gendata.m
in the barotropic gyre tutorial) to see how simple analytical wind forcing data are generated for the case
study experiments.

There is also the possibility of prescribing time-dependent periodic forcing. To do this, concatenate the
successive time records into a single file (for each stress component) ordered in a (x,y,t) fashion and set
the following variables: periodicExternalForcing to . TRUE ., externForcingPeriod to the period (in s)
of which the forcing varies (typically 1 month), and externForcingCycle to the repeat time (in s) of the
forcing (typically 1 year; note externForcingCycle must be a multiple of externForcingPeriod). With these
variables set up, the model will interpolate the forcing linearly at each iteration.

Dissipation

3.7. Customizing the model configuration 115

http://mitgcm.org/lxr/ident/MITgcm?_i=momViscosity
http://mitgcm.org/lxr/ident/MITgcm?_i=momAdvection
http://mitgcm.org/lxr/ident/MITgcm?_i=momForcing
http://mitgcm.org/lxr/ident/MITgcm?_i=useCoriolis
http://mitgcm.org/lxr/ident/MITgcm?_i=momPressureForcing
http://mitgcm.org/lxr/ident/MITgcm?_i=momStepping
http://mitgcm.org/lxr/ident/MITgcm?_i=metricTerms
https://github.com/MITgcm/MITgcm/blob/master/model/inc/PARAMS.h
http://mitgcm.org/lxr/ident/MITgcm?_i=uVelInitFile
http://mitgcm.org/lxr/ident/MITgcm?_i=vVelInitFile
https://github.com/MITgcm/MITgcm/blob/master/verification/tutorial_deep_convection/input/
http://mitgcm.org/lxr/ident/MITgcm?_i=zonalWindFile
http://mitgcm.org/lxr/ident/MITgcm?_i=meridWindFile
http://mitgcm.org/lxr/ident/MITgcm?_i=readBinaryPrec
https://github.com/MITgcm/MITgcm/blob/master/verification/tutorial_barotropic_gyre/input/gendata.m
http://mitgcm.org/lxr/ident/MITgcm?_i=periodicExternalForcing
http://mitgcm.org/lxr/ident/MITgcm?_i=externForcingPeriod
http://mitgcm.org/lxr/ident/MITgcm?_i=externForcingCycle
http://mitgcm.org/lxr/ident/MITgcm?_i=externForcingCycle
http://mitgcm.org/lxr/ident/MITgcm?_i=externForcingPeriod

MITgcm Documentation, Release 1.0

The lateral eddy viscosity coefficient is specified through the variable viscAh (in m?s™'). The vertical
eddy viscosity coefficient is specified through the variable viscAz (in m?s™!) for the ocean and viscAp (in
Pa’s™!) for the atmosphere. The vertical diffusive fluxes can be computed implicitly by setting the logical
variable implicitViscosity to . TRUE.. In addition, biharmonic mixing can be added as well through the
variable viscA4 (in m*s™'). On a spherical polar grid, you might also need to set the variable cosPower
which is set to 0 by default and which represents the power of cosine of latitude to multiply viscosity.
Slip or no-slip conditions at lateral and bottom boundaries are specified through the logical variables
no_slip_sides and no_slip_bottom. If set to . FALSE ., free-slip boundary conditions are applied. If no-
slip boundary conditions are applied at the bottom, a bottom drag can be applied as well. Two forms
are available: linear (set the variable bottomDraglinear in m/s) and quadratic (set the variable bottom-
DragQuadratic, dimensionless).

The Fourier and Shapiro filters are described elsewhere.

C-D Scheme

If you run at a sufficiently coarse resolution, you will need the C-D scheme for the computation of the
Coriolis terms. The variable tauCD, which represents the C-D scheme coupling timescale (in s) needs to
be set.

Calculation of Pressure/Geopotential

First, to run a non-hydrostatic ocean simulation, set the logical variable nonHydrostatic to . TRUE .. The
pressure field is then inverted through a 3D elliptic equation. (Note: this capability is not available for
the atmosphere yet.) By default, a hydrostatic simulation is assumed and a 2D elliptic equation is used to
invert the pressure field. The parameters controlling the behavior of the elliptic solvers are the variables
cg2dMaxlters and cg2dTargetResidual for the 2D case and cg3dMaxlIters and cg3dTargetResidual for the
3D case. You probably won’t need to alter the default values (are we sure of this?).

For the calculation of the surface pressure (for the ocean) or surface geopotential (for the atmosphere)
you need to set the logical variables rigidLid and implicitFreeSurface (set one to . TRUE . and the other
to .FALSE. depending on how you want to deal with the ocean upper or atmosphere lower boundary).

3.7.4 Parameters: Tracer Equations

This section covers the tracer equations i.e. the potential temperature equation and the salinity (for the ocean) or
specific humidity (for the atmosphere) equation. As for the momentum equations, we only describe for now the
parameters that you are likely to change. The logical variables tempDiffusion, tempAdvection, tempForcing, and
tempStepping allow you to turn on/off terms in the temperature equation (same thing for salinity or specific humidity
with variables saltDiffusion, saltAdvection etc.). These variables are all assumed here to be set to . TRUE.. Look at

file PARAMS.h for a precise definition.

Initialization

The initial tracer data can be contained in the binary files hydrogThetaFile and hydrogSaltFile. These files
should contain 3D data ordered in an (X,y,r) fashion with k=1 as the first vertical level. If no file names are
provided, the tracers are then initialized with the values of tRef and sRef mentioned above. In this case,
the initial tracer data are uniform in x and y for each depth level.

Forcing

This part is more relevant for the ocean, the procedure for the atmosphere not being completely stabilized
at the moment.

A combination of fluxes data and relaxation terms can be used for driving the tracer equations. For poten-
tial temperature, heat flux data (in W/m?) can be stored in the 2D binary file surfQfile. Alternatively or in
addition, the forcing can be specified through a relaxation term. The SST data to which the model surface
temperatures are restored to are supposed to be stored in the 2D binary file thetaClimFile. The corre-
sponding relaxation time scale coefficient is set through the variable tauThetaClimRelax (in s). The same

116

Chapter 3. Getting Started with MITgcm

http://mitgcm.org/lxr/ident/MITgcm?_i=viscAh
http://mitgcm.org/lxr/ident/MITgcm?_i=viscAz
http://mitgcm.org/lxr/ident/MITgcm?_i=viscAp
http://mitgcm.org/lxr/ident/MITgcm?_i=implicitViscosity
http://mitgcm.org/lxr/ident/MITgcm?_i=viscA4
http://mitgcm.org/lxr/ident/MITgcm?_i=cosPower
http://mitgcm.org/lxr/ident/MITgcm?_i=no_slip_sides
http://mitgcm.org/lxr/ident/MITgcm?_i=no_slip_bottom
http://mitgcm.org/lxr/ident/MITgcm?_i=bottomDragLinear
http://mitgcm.org/lxr/ident/MITgcm?_i=bottomDragQuadratic
http://mitgcm.org/lxr/ident/MITgcm?_i=bottomDragQuadratic
http://mitgcm.org/lxr/ident/MITgcm?_i=tauCD
http://mitgcm.org/lxr/ident/MITgcm?_i=nonHydrostatic
http://mitgcm.org/lxr/ident/MITgcm?_i=cg2dMaxIters
http://mitgcm.org/lxr/ident/MITgcm?_i=cg2dTargetResidual
http://mitgcm.org/lxr/ident/MITgcm?_i=cg3dMaxIters
http://mitgcm.org/lxr/ident/MITgcm?_i=cg3dTargetResidual
http://mitgcm.org/lxr/ident/MITgcm?_i=rigidLid
http://mitgcm.org/lxr/ident/MITgcm?_i=implicitFreeSurface
http://mitgcm.org/lxr/ident/MITgcm?_i=tempDiffusion
http://mitgcm.org/lxr/ident/MITgcm?_i=tempAdvection
http://mitgcm.org/lxr/ident/MITgcm?_i=tempForcing
http://mitgcm.org/lxr/ident/MITgcm?_i=tempStepping
http://mitgcm.org/lxr/ident/MITgcm?_i=saltDiffusion
http://mitgcm.org/lxr/ident/MITgcm?_i=saltAdvection
https://github.com/MITgcm/MITgcm/blob/master/model/inc/PARAMS.h
http://mitgcm.org/lxr/ident/MITgcm?_i=hydrogThetaFile
http://mitgcm.org/lxr/ident/MITgcm?_i=hydrogSaltFile
http://mitgcm.org/lxr/ident/MITgcm?_i=tRef
http://mitgcm.org/lxr/ident/MITgcm?_i=sRef
http://mitgcm.org/lxr/ident/MITgcm?_i=surfQfile
http://mitgcm.org/lxr/ident/MITgcm?_i=thetaClimFile
http://mitgcm.org/lxr/ident/MITgcm?_i=tauThetaClimRelax

MITgcm Documentation, Release 1.0

procedure applies for salinity with the variable names EmPmRfile, saltClimFile, and tauSaltClimRelax
for freshwater flux (in m/s) and surface salinity (in ppt) data files and relaxation time scale coefficient (in
s), respectively. Also for salinity, if the CPP key USE_NATURAL_BCS is turned on, natural boundary
conditions are applied, i.e., when computing the surface salinity tendency, the freshwater flux is multiplied
by the model surface salinity instead of a constant salinity value.

As for the other input files, the precision with which to read the data is controlled by the variable read-
BinaryPrec. Time-dependent, periodic forcing can be applied as well following the same procedure used
for the wind forcing data (see above).

Dissipation

Lateral eddy diffusivities for temperature and salinity/specific humidity are specified through the variables
diffKhT and diffKhS (in m?/s). Vertical eddy diffusivities are specified through the variables diffKzT and
diffKzS (in m?/s) for the ocean and diffKpT and diffKpS (in Pa?/s) for the atmosphere. The vertical
diffusive fluxes can be computed implicitly by setting the logical variable implicitDiffusion to . TRUE..
In addition, biharmonic diffusivities can be specified as well through the coefficients diffK4T and diffK4S
(in m*/s). Note that the cosine power scaling (specified through cosPower; see above) is applied to the
tracer diffusivities (Laplacian and biharmonic) as well. The Gent and McWilliams parameterization for
oceanic tracers is described in the package section. Finally, note that tracers can be also subject to Fourier
and Shapiro filtering (see the corresponding section on these filters).

Ocean convection

Two options are available to parameterize ocean convection. To use the first option, a convective adjust-
ment scheme, you need to set the variable cadjFreq, which represents the frequency (in s) with which
the adjustment algorithm is called, to a non-zero value (note, if cadjFreq set to a negative value by the
user, the model will set it to the tracer time step). The second option is to parameterize convection with
implicit vertical diffusion. To do this, set the logical variable implicitDiffusion to . TRUE. and the real
variable ivdc_kappa to a value (in m?/s) you wish the tracer vertical diffusivities to have when mixing
tracers vertically due to static instabilities. Note that cadjFreq and ivdc_kappa cannot both have non-zero
value.

3.7.5 Parameters: Simulation Controls

The model “clock™ is defined by the variable deltaTClock (in s) which determines the I/O frequencies and is used in
tagging output. Typically, you will set it to the tracer time step for accelerated runs (otherwise it is simply set to the
default time step deltaT). Frequency of checkpointing and dumping of the model state are referenced to this clock (see
below).

Run Duration

The beginning of a simulation is set by specifying a start time (in s) through the real variable startTime or
by specifying an initial iteration number through the integer variable nlterQ. If these variables are set to
nonzero values, the model will look for a ”’pickup” file pickup.0000nIter0 to restart the integration.
The end of a simulation is set through the real variable endTime (in s). Alternatively, you can specify
instead the number of time steps to execute through the integer variable nTimeSteps.

Frequency of Output

Real variables defining frequencies (in s) with which output files are written on disk need to be set up.
dumpFreq controls the frequency with which the instantaneous state of the model is saved. chkPtFreq
and pchkPtFreq control the output frequency of rolling and permanent checkpoint files, respectively. In
addition, time-averaged fields can be written out by setting the variable taveFreq (in s). The precision with
which to write the binary data is controlled by the integer variable writeBinaryPrec (set it to 32 or 64).

3.7. Customizing the model configuration 117

http://mitgcm.org/lxr/ident/MITgcm?_i=EmPmRfile
http://mitgcm.org/lxr/ident/MITgcm?_i=saltClimFile
http://mitgcm.org/lxr/ident/MITgcm?_i=tauSaltClimRelax
http://mitgcm.org/lxr/ident/MITgcm?_i=readBinaryPrec
http://mitgcm.org/lxr/ident/MITgcm?_i=readBinaryPrec
http://mitgcm.org/lxr/ident/MITgcm?_i=diffKhT
http://mitgcm.org/lxr/ident/MITgcm?_i=diffKhS
http://mitgcm.org/lxr/ident/MITgcm?_i=diffKzT
http://mitgcm.org/lxr/ident/MITgcm?_i=diffKzS
http://mitgcm.org/lxr/ident/MITgcm?_i=diffKpT
http://mitgcm.org/lxr/ident/MITgcm?_i=diffKpS
http://mitgcm.org/lxr/ident/MITgcm?_i=implicitDiffusion
http://mitgcm.org/lxr/ident/MITgcm?_i=diffK4T
http://mitgcm.org/lxr/ident/MITgcm?_i=diffK4S
http://mitgcm.org/lxr/ident/MITgcm?_i=cosPower
http://mitgcm.org/lxr/ident/MITgcm?_i=cadjFreq
http://mitgcm.org/lxr/ident/MITgcm?_i=cadjFreq
http://mitgcm.org/lxr/ident/MITgcm?_i=implicitDiffusion
http://mitgcm.org/lxr/ident/MITgcm?_i=ivdc_kappa
http://mitgcm.org/lxr/ident/MITgcm?_i=cadjFreq
http://mitgcm.org/lxr/ident/MITgcm?_i=ivdc_kappa
http://mitgcm.org/lxr/ident/MITgcm?_i=deltaTClock
http://mitgcm.org/lxr/ident/MITgcm?_i=deltaT
http://mitgcm.org/lxr/ident/MITgcm?_i=startTime
http://mitgcm.org/lxr/ident/MITgcm?_i=nIter0
http://mitgcm.org/lxr/ident/MITgcm?_i=endTime
http://mitgcm.org/lxr/ident/MITgcm?_i=nTimeSteps
http://mitgcm.org/lxr/ident/MITgcm?_i=dumpFreq
http://mitgcm.org/lxr/ident/MITgcm?_i=chkPtFreq
http://mitgcm.org/lxr/ident/MITgcm?_i=pchkPtFreq
http://mitgcm.org/lxr/ident/MITgcm?_i=taveFreq
http://mitgcm.org/lxr/ident/MITgcm?_i=writeBinaryPrec

MITgcm Documentation, Release 1.0

3.7.6 Parameters: Default Values

The CPP keys relative to the “numerical model” part of the code are all defined and set in the file CPP_OPTIONS.h in
the directory model/inc/ or in one of the code directories of the case study experiments under verification/. The model
parameters are defined and declared in the file PARAMS.h and their default values are set in the routine set_defaults.F.
The default values can be modified in the namelist file data which needs to be located in the directory where you
will run the model. The parameters are initialized in the routine ini_parms.F. Look at this routine to see in what part
of the namelist the parameters are located. Here is a complete list of the model parameters related to the main model
(namelist parameters for the packages are located in the package descriptions), their meaning, and their default values:

Name Value Description

buoyancyRelation OCEANIC buoyancy relation

fluidIsAir F fluid major constituent is air

fluidIsWater T fluid major constituent is water

usingPCoords F use pressure coordinates

usingZCoords T use z-coordinates

tRef 2.0E+01 at k=top | reference temperature profile (°C or K)

sRef 3.0E+01 at k=top | reference salinity profile (psu)

viscAh 0.0E+00 lateral eddy viscosity (m*/s)

viscAhMax 1.0E+21 maximum lateral eddy viscosity (m*/s)

viscAhGrid 0.0E+00 grid dependent lateral eddy viscosity (non-dim.)
useFullLeith F use full form of Leith viscosity on/off flag
useStrainTensionVisc | F use StrainTension form of viscous operator on/off flag
useAreaViscLength F use area for visc length instead of geom. mean
viscC2leith 0.0E+00 Leith harmonic visc. factor (on grad(vort),non-dim.)
viscC2leithD 0.0E+00 Leith harmonic viscosity factor (on grad(div),non-dim.)
viscC2smag 0.0E+00 Smagorinsky harmonic viscosity factor (non-dim.)
viscA4 0.0E+00 lateral biharmonic viscosity (m*/s)

viscA4Max 1.0E+21 maximum biharmonic viscosity (m?/s)

viscA4Grid 0.0E+00 grid dependent biharmonic viscosity (non-dim.)
viscC4leith 0.0E+00 Leith biharmonic viscosity factor (on grad(vort), non-dim.)
viscC4leithD 0.0E+00 Leith biharmonic viscosity factor (on grad(div), non-dim.)
viscC4Smag 0.0E+00 Smagorinsky biharmonic viscosity factor (non-dim)
no_slip_sides T viscous BCs: no-slip sides

sideDragFactor 2.0E+00 side-drag scaling factor (non-dim)

VisCAr 0.0E+00 vertical eddy viscosity (units of r’/s)

no_slip_bottom T viscous BCs: no-slip bottom

bottomDragLinear 0.0E+00 linear bottom-drag coefficient (m/s)
bottomDragQuadratic | 0.0E+00 quadratic bottom-drag coeff. (1)

diffKhT 0.0E+00 Laplacian diffusion of heat laterally (m?/s)

diffK4T 0.0E+00 biharmonic diffusion of heat laterally (m*/s)

diffKhS 0.0E+00 Laplacian diffusion of salt laterally (m?/s)

diffK4S 0.0E+00 biharmonic diffusion of salt laterally (m®*/s)
diffKrNrT 0.0E+00 at k=top | vertical profile of vertical diffusion of temp (m?/s)
diffKrNrS 0.0E+00 at k=top | vertical profile of vertical diffusion of salt (m?/s)
diffKrBL79surf 0.0E+00 surface diffusion for Bryan and Lewis 1979 (m?/s)
diffKrBL79deep 0.0E+00 deep diffusion for Bryan and Lewis 1979 (m?/s)
diffKrBL79scl 2.0E+02 depth scale for Bryan and Lewis 1979 (m)
diffKrBL79Ho -2.0E+03 turning depth for Bryan and Lewis 1979 (m)
eosType LINEAR equation of state

Continued on next page

118 Chapter 3. Getting Started with MITgcm

https://github.com/MITgcm/MITgcm/blob/master/model/inc/CPP_OPTIONS.h
https://github.com/MITgcm/MITgcm/blob/master/model/inc/
https://github.com/MITgcm/MITgcm/blob/master/verification/
https://github.com/MITgcm/MITgcm/blob/master/model/inc/PARAMS.h
https://github.com/MITgcm/MITgcm/blob/master/model/src/set_defaults.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/ini_parms.F
http://mitgcm.org/lxr/ident/MITgcm?_i=buoyancyRelation
http://mitgcm.org/lxr/ident/MITgcm?_i=fluidIsAir
http://mitgcm.org/lxr/ident/MITgcm?_i=fluidIsWater
http://mitgcm.org/lxr/ident/MITgcm?_i=usingPCoords
http://mitgcm.org/lxr/ident/MITgcm?_i=usingZCoords
http://mitgcm.org/lxr/ident/MITgcm?_i=tRef
http://mitgcm.org/lxr/ident/MITgcm?_i=sRef
http://mitgcm.org/lxr/ident/MITgcm?_i=viscAh
http://mitgcm.org/lxr/ident/MITgcm?_i=viscAhMax
http://mitgcm.org/lxr/ident/MITgcm?_i=viscAhGrid
http://mitgcm.org/lxr/ident/MITgcm?_i=useFullLeith
http://mitgcm.org/lxr/ident/MITgcm?_i=useStrainTensionVisc
http://mitgcm.org/lxr/ident/MITgcm?_i=useAreaViscLength
http://mitgcm.org/lxr/ident/MITgcm?_i=viscC2leith
http://mitgcm.org/lxr/ident/MITgcm?_i=viscC2leithD
http://mitgcm.org/lxr/ident/MITgcm?_i=viscC2smag
http://mitgcm.org/lxr/ident/MITgcm?_i=viscA4
http://mitgcm.org/lxr/ident/MITgcm?_i=viscA4Max
http://mitgcm.org/lxr/ident/MITgcm?_i=viscA4Grid
http://mitgcm.org/lxr/ident/MITgcm?_i=viscC4leith
http://mitgcm.org/lxr/ident/MITgcm?_i=viscC4leithD
http://mitgcm.org/lxr/ident/MITgcm?_i=viscC4Smag
http://mitgcm.org/lxr/ident/MITgcm?_i=no_slip_sides
http://mitgcm.org/lxr/ident/MITgcm?_i=sideDragFactor
http://mitgcm.org/lxr/ident/MITgcm?_i=viscAr
http://mitgcm.org/lxr/ident/MITgcm?_i=no_slip_bottom
http://mitgcm.org/lxr/ident/MITgcm?_i=bottomDragLinear
http://mitgcm.org/lxr/ident/MITgcm?_i=bottomDragQuadratic
http://mitgcm.org/lxr/ident/MITgcm?_i=diffKhT
http://mitgcm.org/lxr/ident/MITgcm?_i=diffK4T
http://mitgcm.org/lxr/ident/MITgcm?_i=diffKhS
http://mitgcm.org/lxr/ident/MITgcm?_i=diffK4S
http://mitgcm.org/lxr/ident/MITgcm?_i=diffKrNrT
http://mitgcm.org/lxr/ident/MITgcm?_i=diffKrNrS
http://mitgcm.org/lxr/ident/MITgcm?_i=diffKrBL79surf
http://mitgcm.org/lxr/ident/MITgcm?_i=diffKrBL79deep
http://mitgcm.org/lxr/ident/MITgcm?_i=diffKrBL79scl
http://mitgcm.org/lxr/ident/MITgcm?_i=diffKrBL79Ho
http://mitgcm.org/lxr/ident/MITgcm?_i=eosType

MITgcm Documentation, Release 1.0

Table 3.1 — continued from previous page

| tAlpha | 2.0E-04 | linear EOS thermal expansion coefficient (1/°C)
Name Value Description
sBeta 7.4E-04 linear EOS haline contraction coef (1/psu)
rhonil 9.998E+02 reference density (kg/m’)
rhoConst 9.998E+02 reference density (kg/m’)
rhoConstFresh 9.998E+02 reference density (kg/m’)
gravity 9.81E+00 gravitational acceleration (m/s®)
gBaro 9.81E+00 barotropic gravity (m/s>)
rotationPeriod 8.6164E+04 rotation period (s)
omega 27 /rotationPeriod | angular velocity (rad/s)
fO 1.0E-04 reference coriolis parameter (1/s)
beta 1.0E-11 beta (m'sT)
freeSurfFac 1.0E+00 implicit free surface factor
implicitFreeSurface T implicit free surface on/off flag
rigidLid F rigid lid on/off flag
implicSurfPress 1.0E+00 surface pressure implicit factor (0-1)
implicDiv2Dflow 1.0E+00 barotropic flow div. implicit factor (0-1)
exactConserv F exact volume conservation on/off flag
uniformLin_PhiSurf T use uniform Bo_surf on/off flag
nonlinFreeSurf 0 non-linear free surf. options (-1,0,1,2,3)
hFacInf 2.0E-01 lower threshold for hFac (nonlinFreeSurf only)
hFacSup 2.0E+00 upper threshold for hFac (nonlinFreeSurf only)
select_rStar 0 r

useRealFreshWaterFlux F real freshwater flux on/off flag
convertFW2Salt 3.5E+01 convert FW flux to salt flux (-1=use local S)
use3Dsolver F use 3-D pressure solver on/off flag
nonHydrostatic F non-hydrostatic on/off flag
nh_Am?2 1.0E+00 non-hydrostatic terms scaling factor
quasiHydrostatic F quasi-hydrostatic on/off flag
momStepping T momentum equation on/off flag
vectorInvariantMomentum | F vector-invariant momentum on/off
momAdvection T momentum advection on/off flag
mom Viscosity T momentum viscosity on/off flag
momImplVertAdv F momentum implicit vert. advection on/off
implicitViscosity F implicit viscosity on/off flag
metricTerms F metric terms on/off flag
useNHMTerms F non-hydrostatic metric terms on/off
useCoriolis T Coriolis on/off flag
useCDscheme F CD scheme on/off flag
useJamartWetPoints F Coriolis wetpoints method flag
useJamartMomAdv F VI non-linear terms Jamart flag

Name Value Description

SadournyCoriolis F Sadourny Coriolis discretization flag

upwind Vorticity F upwind bias vorticity flag

Continued on next page

3.7. Customizing the model configuration

119

http://mitgcm.org/lxr/ident/MITgcm?_i=tAlpha
http://mitgcm.org/lxr/ident/MITgcm?_i=sBeta
http://mitgcm.org/lxr/ident/MITgcm?_i=rhonil
http://mitgcm.org/lxr/ident/MITgcm?_i=rhoConst
http://mitgcm.org/lxr/ident/MITgcm?_i=rhoConstFresh
http://mitgcm.org/lxr/ident/MITgcm?_i=gravity
http://mitgcm.org/lxr/ident/MITgcm?_i=gBaro
http://mitgcm.org/lxr/ident/MITgcm?_i=rotationPeriod
http://mitgcm.org/lxr/ident/MITgcm?_i=omega
http://mitgcm.org/lxr/ident/MITgcm?_i=f0
http://mitgcm.org/lxr/ident/MITgcm?_i=beta
http://mitgcm.org/lxr/ident/MITgcm?_i=freeSurfFac
http://mitgcm.org/lxr/ident/MITgcm?_i=implicitFreeSurface
http://mitgcm.org/lxr/ident/MITgcm?_i=rigidLid
http://mitgcm.org/lxr/ident/MITgcm?_i=implicSurfPress
http://mitgcm.org/lxr/ident/MITgcm?_i=implicDiv2Dflow
http://mitgcm.org/lxr/ident/MITgcm?_i=exactConserv
http://mitgcm.org/lxr/ident/MITgcm?_i=uniformLin_PhiSurf
http://mitgcm.org/lxr/ident/MITgcm?_i=nonlinFreeSurf
http://mitgcm.org/lxr/ident/MITgcm?_i=hFacInf
http://mitgcm.org/lxr/ident/MITgcm?_i=hFacSup
http://mitgcm.org/lxr/ident/MITgcm?_i=select_rStar
http://mitgcm.org/lxr/ident/MITgcm?_i=useRealFreshWaterFlux
http://mitgcm.org/lxr/ident/MITgcm?_i=convertFW2Salt
http://mitgcm.org/lxr/ident/MITgcm?_i=use3Dsolver
http://mitgcm.org/lxr/ident/MITgcm?_i=nonHydrostatic
http://mitgcm.org/lxr/ident/MITgcm?_i=nh_Am2
http://mitgcm.org/lxr/ident/MITgcm?_i=quasiHydrostatic
http://mitgcm.org/lxr/ident/MITgcm?_i=momStepping
http://mitgcm.org/lxr/ident/MITgcm?_i=vectorInvariantMomentum
http://mitgcm.org/lxr/ident/MITgcm?_i=momAdvection
http://mitgcm.org/lxr/ident/MITgcm?_i=momViscosity
http://mitgcm.org/lxr/ident/MITgcm?_i=momImplVertAdv
http://mitgcm.org/lxr/ident/MITgcm?_i=implicitViscosity
http://mitgcm.org/lxr/ident/MITgcm?_i=metricTerms
http://mitgcm.org/lxr/ident/MITgcm?_i=useNHMTerms
http://mitgcm.org/lxr/ident/MITgcm?_i=useCoriolis
http://mitgcm.org/lxr/ident/MITgcm?_i=useCDscheme
http://mitgcm.org/lxr/ident/MITgcm?_i=useJamartWetPoints
http://mitgcm.org/lxr/ident/MITgcm?_i=useJamartMomAdv
http://mitgcm.org/lxr/ident/MITgcm?_i=SadournyCoriolis
http://mitgcm.org/lxr/ident/MITgcm?_i=upwindVorticity

MITgcm Documentation, Release 1.0

Table 3.3 — continued from previous page

useAbsVorticity F work with f

highOrderVorticity F high order interp. of vort. flag

upwindShear F upwind vertical shear advection flag

selectKEscheme 0 kinetic energy scheme selector

momPForcing T momentum forcing on/off flag

momPressureForcing | T momentum pressure term on/off flag

implicitintGravWave | F implicit internal gravity wave flag

staggerTimeStep F stagger time stepping on/off flag

multiDimAdvection | T enable/disable multi-dim advection

useMultiDimAdvec F multi-dim advection is/is-not used

implicitDiffusion F implicit diffusion on/off flag

tempStepping T temperature equation on/off flag

tempAdvection T temperature advection on/off flag

tempImpl VertAdv F temp. implicit vert. advection on/off

tempForcing T temperature forcing on/off flag

saltStepping T salinity equation on/off flag

saltAdvection T salinity advection on/off flag

saltimpl VertAdv F salinity implicit vert. advection on/off

saltForcing T salinity forcing on/off flag

readBinaryPrec 32 precision used for reading binary files

writeBinaryPrec 32 precision used for writing binary files

globalFiles F write “global” (=not per tile) files

useSingleCpulO F only master MPI process does I/O

debugMode F debug Mode on/off flag

debLevA 1 Ist level of debugging

debLevB 2 2nd level of debugging

debugLevel 1 select debugging level

cg2dMaxlters 150 upper limit on 2d con. grad iterations

cg2dChkResFreq 1 2d con. grad convergence test frequency

cg2dTargetResidual 1.0E-07 2d con. grad target residual

cg2dTargetResWunit | -1.0E+00 cg2d target residual [W units]

cg2dPreCondFreq 1 freq. for updating cg2d pre-conditioner

nlter0 0 run starting timestep number

nTimeSteps 0 number of timesteps

deltatTmom 6.0E+01 momentum equation timestep (s)

deltaTfreesurf 6.0E+01 freeSurface equation timestep (s)

dTtracerLev 6.0E+01 at k=top | tracer equation timestep (s)

deltaTClock 6.0E+01 model clock timestep (s)
Name Value Description
cAdjFreq 0.0E+00 convective adjustment interval (s)
momForcingOutAB 0 =1: take momentum forcing out of Adams-Bashforth
tracForcingOutAB 0 =1: take T.,S,pTr forcing out of Adams-Bashforth
momDissip_In_AB T put dissipation tendency in Adams-Bashforth
doAB_onGtGs T apply AB on tendencies (rather than on T,S)
abEps 1.0E-02 Adams-Bashforth-2 stabilizing weight
baseTime 0.0E+00 model base time (s)
startTime 0.0E+00 run start time (s)

Continued on next page
120 Chapter 3. Getting Started with MITgcm

http://mitgcm.org/lxr/ident/MITgcm?_i=useAbsVorticity
http://mitgcm.org/lxr/ident/MITgcm?_i=highOrderVorticity
http://mitgcm.org/lxr/ident/MITgcm?_i=upwindShear
http://mitgcm.org/lxr/ident/MITgcm?_i=selectKEscheme
http://mitgcm.org/lxr/ident/MITgcm?_i=momForcing
http://mitgcm.org/lxr/ident/MITgcm?_i=momPressureForcing
http://mitgcm.org/lxr/ident/MITgcm?_i=implicitIntGravWave
http://mitgcm.org/lxr/ident/MITgcm?_i=staggerTimeStep
http://mitgcm.org/lxr/ident/MITgcm?_i=multiDimAdvection
http://mitgcm.org/lxr/ident/MITgcm?_i=useMultiDimAdvec
http://mitgcm.org/lxr/ident/MITgcm?_i=implicitDiffusion
http://mitgcm.org/lxr/ident/MITgcm?_i=tempStepping
http://mitgcm.org/lxr/ident/MITgcm?_i=tempAdvection
http://mitgcm.org/lxr/ident/MITgcm?_i=tempImplVertAdv
http://mitgcm.org/lxr/ident/MITgcm?_i=tempForcing
http://mitgcm.org/lxr/ident/MITgcm?_i=saltStepping
http://mitgcm.org/lxr/ident/MITgcm?_i=saltAdvection
http://mitgcm.org/lxr/ident/MITgcm?_i=saltImplVertAdv
http://mitgcm.org/lxr/ident/MITgcm?_i=saltForcing
http://mitgcm.org/lxr/ident/MITgcm?_i=readBinaryPrec
http://mitgcm.org/lxr/ident/MITgcm?_i=writeBinaryPrec
http://mitgcm.org/lxr/ident/MITgcm?_i=globalFiles
http://mitgcm.org/lxr/ident/MITgcm?_i=useSingleCpuIO
http://mitgcm.org/lxr/ident/MITgcm?_i=debugMode
http://mitgcm.org/lxr/ident/MITgcm?_i=debLevA
http://mitgcm.org/lxr/ident/MITgcm?_i=debLevB
http://mitgcm.org/lxr/ident/MITgcm?_i=debugLevel
http://mitgcm.org/lxr/ident/MITgcm?_i=cg2dMaxIters
http://mitgcm.org/lxr/ident/MITgcm?_i=cg2dChkResFreq
http://mitgcm.org/lxr/ident/MITgcm?_i=cg2dTargetResidual
http://mitgcm.org/lxr/ident/MITgcm?_i=cg2dTargetResWunit
http://mitgcm.org/lxr/ident/MITgcm?_i=cg2dPreCondFreq
http://mitgcm.org/lxr/ident/MITgcm?_i=nIter0
http://mitgcm.org/lxr/ident/MITgcm?_i=nTimeSteps
http://mitgcm.org/lxr/ident/MITgcm?_i=deltatTmom
http://mitgcm.org/lxr/ident/MITgcm?_i=deltaTfreesurf
http://mitgcm.org/lxr/ident/MITgcm?_i=dTtracerLev
http://mitgcm.org/lxr/ident/MITgcm?_i=deltaTClock
http://mitgcm.org/lxr/ident/MITgcm?_i=cAdjFreq
http://mitgcm.org/lxr/ident/MITgcm?_i=momForcingOutAB
http://mitgcm.org/lxr/ident/MITgcm?_i=tracForcingOutAB
http://mitgcm.org/lxr/ident/MITgcm?_i=momDissip_In_AB
http://mitgcm.org/lxr/ident/MITgcm?_i=doAB_onGtGs
http://mitgcm.org/lxr/ident/MITgcm?_i=abEps
http://mitgcm.org/lxr/ident/MITgcm?_i=baseTime
http://mitgcm.org/lxr/ident/MITgcm?_i=startTime

MITgcm Documentation, Release 1.0

Table 3.4 — continued from previous page

endTime 0.0E+00 integration ending time (s)

pChkPtFreq 0.0E+00 permanent restart/checkpoint file interval (s)
chkPtFreq 0.0E+00 rolling restart/checkpoint file interval (s)
pickup_write_mdsio T model I/O flag

pickup_read_mdsio T model I/O flag

pickup_write_immed F model I/O flag

dumpFreq 0.0E+00 model state write out interval (s)

dumplInitAndLast T write out initial and last iteration model state
snapshot_mdsio | T | model I/O flag.

monitorFreq | 6.0E+01 | monitor output interval (s)

monitor_stdio | T | model I/O flag.

externForcingPeriod 0.0E+00 forcing period (s)

externForcingCycle 0.0E+00 period of the cycle (s)

tauThetaClimRelax 0.0E+00 relaxation time scale (s)

tauSaltClimRelax 0.0E+00 relaxation time scale (s)

latBandClimRelax 3.703701E+05 maximum latitude where relaxation applied
usingCartesianGrid T Cartesian coordinates flag (true / false)
usingSphericalPolarGrid F spherical coordinates flag (true / false)
usingCylindrical Grid F spherical coordinates flag (true / false)
Ro_Sealevel 0.0E+00 r(1) (units of r)

rkSign -1.0E+00 index orientation relative to vertical coordinate
horiVertRatio 1.0E+00 ratio on units : horizontal - vertical

drC 5.0E+03 at k=1 center cell separation along Z axis (units of r)

drF 1.0E+04 at k=top cell face separation along Z axis (units of r)

delX 1.234567E+05 at i=east U-point spacing (m - cartesian, degrees - spherical)
delY 1.234567E+05 at j=1 V-point spacing (m - cartesian, degrees - spherical)
ygOrigin 0.0E+00 South edge Y-axis origin (cartesian: m, spherical: deg.)
xgOrigin 0.0E+00 West edge X-axis origin (cartesian: m, spherical: deg.)
rSphere 6.37E+06 Radius (ignored - cartesian, m - spherical)

xcoord 6.172835E+04 at i=1 P-point X coord (m - cartesian, degrees - spherical)
ycoord 6.172835E+04 at j=1 P-point Y coord (m - cartesian, degrees - spherical)
rcoord -5.0E+03 at k=1 P-point r coordinate (units of r)

rF 0.0E+00 at k=1 We-interface r coordinate (units of r)

dBdrRef 0.0E+00 at k=top vertical gradient of reference buoyancy [(m/s/r)”]

Name | Value

Description

dxF

1.234567E+05 at k=top

dxF(:;,1,:,1) (m - cartesian, degrees - spherical)

dyF

1.234567E+05 at i=east

dyF(:,1,:,1) (m - cartesian, degrees - spherical)

dxG

1.234567E+05 at i=east

dxG(,1,:,1) (m - cartesian, degrees - spherical)

dyG

1.234567E+05 at i=east

dyG(:,1,:,1) (m - cartesian, degrees - spherical)

dxC

1.234567E+05 at i=east

dxC(:,1,:,1) (m - cartesian, degrees - spherical)

dyC

1.234567E+05 at i=east

dyC(.,1,:,1) (m - cartesian, degrees - spherical)

dxV

1.234567E+05 at i=east

dxV(:,1,:;,1) (m - cartesian, degrees - spherical)

dyU

1.234567E+05 at i=east

dyU(,1,:,1) (m - cartesian, degrees - spherical)

rA

1.524155E+10 at i=east

rA(:,1,:;,1) (m - cartesian, degrees - spherical)

rAw

1.524155E+10 at k=top

rAw(:,1,:,1) (m - cartesian, degrees - spherical)

rAs

1.524155E+10 at k=top

rAs(:,1,:,1) (m - cartesian, degrees - spherical)

3.7. Customizing the model configuration

121

http://mitgcm.org/lxr/ident/MITgcm?_i=endTime
http://mitgcm.org/lxr/ident/MITgcm?_i=pChkPtFreq
http://mitgcm.org/lxr/ident/MITgcm?_i=chkPtFreq
http://mitgcm.org/lxr/ident/MITgcm?_i=pickup_write_mdsio
http://mitgcm.org/lxr/ident/MITgcm?_i=pickup_read_mdsio
http://mitgcm.org/lxr/ident/MITgcm?_i=pickup_write_immed
http://mitgcm.org/lxr/ident/MITgcm?_i=dumpFreq
http://mitgcm.org/lxr/ident/MITgcm?_i=dumpInitAndLast
http://mitgcm.org/lxr/ident/MITgcm?_i=snapshot_mdsio
http://mitgcm.org/lxr/ident/MITgcm?_i=monitorFreq
http://mitgcm.org/lxr/ident/MITgcm?_i=monitor_stdio
http://mitgcm.org/lxr/ident/MITgcm?_i=externForcingPeriod
http://mitgcm.org/lxr/ident/MITgcm?_i=externForcingCycle
http://mitgcm.org/lxr/ident/MITgcm?_i=tauThetaClimRelax
http://mitgcm.org/lxr/ident/MITgcm?_i=tauSaltClimRelax
http://mitgcm.org/lxr/ident/MITgcm?_i=latBandClimRelax
http://mitgcm.org/lxr/ident/MITgcm?_i=usingCartesianGrid
http://mitgcm.org/lxr/ident/MITgcm?_i=usingSphericalPolarGrid
http://mitgcm.org/lxr/ident/MITgcm?_i=usingCylindricalGrid
http://mitgcm.org/lxr/ident/MITgcm?_i=Ro_SeaLevel
http://mitgcm.org/lxr/ident/MITgcm?_i=rkSign
http://mitgcm.org/lxr/ident/MITgcm?_i=horiVertRatio
http://mitgcm.org/lxr/ident/MITgcm?_i=drC
http://mitgcm.org/lxr/ident/MITgcm?_i=drF
http://mitgcm.org/lxr/ident/MITgcm?_i=delX
http://mitgcm.org/lxr/ident/MITgcm?_i=delY
http://mitgcm.org/lxr/ident/MITgcm?_i=ygOrigin
http://mitgcm.org/lxr/ident/MITgcm?_i=xgOrigin
http://mitgcm.org/lxr/ident/MITgcm?_i=rSphere
http://mitgcm.org/lxr/ident/MITgcm?_i=xcoord
http://mitgcm.org/lxr/ident/MITgcm?_i=ycoord
http://mitgcm.org/lxr/ident/MITgcm?_i=rcoord
http://mitgcm.org/lxr/ident/MITgcm?_i=rF
http://mitgcm.org/lxr/ident/MITgcm?_i=dBdrRef
http://mitgcm.org/lxr/ident/MITgcm?_i=dxF
http://mitgcm.org/lxr/ident/MITgcm?_i=dyF
http://mitgcm.org/lxr/ident/MITgcm?_i=dxG
http://mitgcm.org/lxr/ident/MITgcm?_i=dyG
http://mitgcm.org/lxr/ident/MITgcm?_i=dxC
http://mitgcm.org/lxr/ident/MITgcm?_i=dyC
http://mitgcm.org/lxr/ident/MITgcm?_i=dxV
http://mitgcm.org/lxr/ident/MITgcm?_i=dyU
http://mitgcm.org/lxr/ident/MITgcm?_i=rA
http://mitgcm.org/lxr/ident/MITgcm?_i=rAw
http://mitgcm.org/lxr/ident/MITgcm?_i=rAs

MITgcm Documentation, Release 1.0

Name Value | Description

tempAdvScheme 2 temp. horiz. advection scheme selector
tempVertAdvScheme | 2 temp. vert. advection scheme selector
tempMultiDimAdvec | F use multi-dim advection method for temp
tempAdamsBashforth | T use Adams-Bashforth time-stepping for temp
saltAdvScheme 2 salinity horiz. advection scheme selector
saltVertAdvScheme 2 salinity vert. advection scheme selector
saltMultiDimAdvec F use multi-dim advection method for salt
saltAdamsBashforth T use Adams-Bashforth time-stepping for salt

122

Chapter 3. Getting Started with MITgcm

http://mitgcm.org/lxr/ident/MITgcm?_i=tempAdvScheme
http://mitgcm.org/lxr/ident/MITgcm?_i=tempVertAdvScheme
http://mitgcm.org/lxr/ident/MITgcm?_i=tempMultiDimAdvec
http://mitgcm.org/lxr/ident/MITgcm?_i=tempAdamsBashforth
http://mitgcm.org/lxr/ident/MITgcm?_i=saltAdvScheme
http://mitgcm.org/lxr/ident/MITgcm?_i=saltVertAdvScheme
http://mitgcm.org/lxr/ident/MITgcm?_i=saltMultiDimAdvec
http://mitgcm.org/lxr/ident/MITgcm?_i=saltAdamsBashforth

CHAPTER 4

MITgcm Tutorial Example Experiments

The full MITgem distribution comes with a set of pre-configured numerical experiments. Some of these example
experiments are tests of individual parts of the model code, but many are fully fledged numerical simulations. Full
tutorials exist for a few of the examples, and are documented in sections Section 4.1 - Section 4.2. The other examples
follow the same general structure as the tutorial examples. However, they only include brief instructions in text
file README. The examples are located in subdirectories under the directory verification. Each example is briefly
described below.

4.1 Barotropic Gyre MITgcm Example

(in directory verification/tutorial_barotropic_gyre/)

This example experiment demonstrates using the MITgem to simulate a Barotropic, wind-forced, ocean gyre circu-
lation. The experiment is a numerical rendition of the gyre circulation problem similar to the problems described
analytically by Stommel in 1966 [St048] and numerically in Holland et. al /HL75].

In this experiment the model is configured to represent a rectangular enclosed box of fluid, 1200 x 1200 km in lateral
extent. The fluid is 5 km deep and is forced by a constant in time zonal wind stress, 7., that varies sinusoidally in
the ‘north-south’ direction. Topologically the grid is Cartesian and the coriolis parameter f is defined according to a
mid-latitude beta-plane equation

fy) = fo+ By 4.1

where v is the distance along the ‘north-south’ axis of the simulated domain. For this experiment f; is set to 10~%s~!
in(4.1)and f =10~ s Im~1L,

The sinusoidal wind-stress variations are defined according to

T:(y) = 7o sin(ﬂLi) 4.2)
y

where L, is the lateral domain extent (1200~km) and 7y is set to 0.1N m~2.

123

https://github.com/MITgcm/MITgcm/blob/master/verification
https://github.com/MITgcm/MITgcm/blob/master/verification/tutorial_barotropic_gyre/

MITgcm Documentation, Release 1.0

Figure 4.1 summarizes the configuration simulated.

TX:O T =0.1
et ST e
0

B =10"s"m" #x tSkm
fa /

L,=1200km

/

le—Il

<+———— L =1200km————

—

<

Figure 4.1: Schematic of simulation domain and wind-stress forcing function for barotropic gyre numerical experi-
ment. The domain is enclosed by solid walls at z = 0, 1200 km and at y = 0, 1200 km.

4.1.1 Equations Solved

The model is configured in hydrostatic form. The implicit free surface form of the pressure equation described in
[MHPA97] is employed. A horizontal Laplacian operator V2 provides viscous dissipation. The wind-stress momen-
tum input is added to the momentum equation for the ‘zonal flow’, u. Other terms in the model are explicitly switched
off for this experiment configuration (see section Section 4.1.3), yielding an active set of equations solved in this
configuration as follows

Du on T,
- _ AV =—2%
Dt Jot gax nVi polAz
Dw on
— A V2 = 4.3
Dt+fu+g(9y nViv =0 4.3)
on L

where u and v and the = and y components of the flow vector .

4.1.2 Discrete Numerical Configuration

The domain is discretised with a uniform grid spacing in the horizontal set to Ax = Ay = 20 km, so that there are
sixty grid cells in the x and y directions. Vertically the model is configured with a single layer with depth, Az, of 5000
m.

4.1.2.1 Numerical Stability Criteria

The Laplacian dissipation coefficient, Ay, is set to 400ms—1.

[Adc95],

This value is chosen to yield a Munk layer width

124 Chapter 4. MITgcm Tutorial Example Experiments

MITgcm Documentation, Release 1.0

An
g

of ~ 100km. This is greater than the model resolution Az, ensuring that the frictional boundary layer is well resolved.

M, =n(=2")3s (44

The model is stepped forward with a time step 0t = 1200 secs. With this time step the stability parameter to the
horizontal Laplacian friction [Adc95]

Apdt
evaluates to 0.012, which is well below the 0.3 upper limit for stability.
The numerical stability for inertial oscillations [Adc95]
S; = f26¢2 (4.6)
evaluates to 0.0144 , which is well below the 0.5 upper limit for stability.
The advective CFL [Adc95] for an extreme maximum horizontal flow speed of || = 2ms~?
@] ot
S, == 4.7)
Ax (

evaluates to 0.12. This is approaching the stability limit of 0.5 and limits ¢ to 1200 s.

4.1.3 Code Configuration
The model configuration for this experiment resides under the directory verification/
tutorial_barotropic_gyre/.
The experiment files

* input/data

* input/data.pkg

* input/eedata

* input/windx.sin_y

* input/topog.box

¢ code/CPP_EEOPTIONS.h

e code/CPP_OPTIONS.h

* code/SIZE.h

contain the code customizations and parameter settings for this experiments. Below we describe the customizations to
these files associated with this experiment.

4.1. Barotropic Gyre MiTgcm Example 125

MITgcm Documentation, Release 1.0

4.1.3.1 File input/data

This file, reproduced completely below, specifies the main parameters for the experiment. The parameters that are
significant for this configuration are

e Line 7

— viscAh=4.E2,
— this line sets the Laplacian friction coefficient to 400m?s—!
Line 10
— beta=1.E-11,
— this line sets /3 (the gradient of the coriolis parameter, f) to 10~ 1s ™ 1m ™!
Lines 15 and 16
— rigidLid=.FALSE.,
— implicitFreeSurface=.TRUE.,

— these lines suppress the rigid lid formulation of the surface pressure inverter and activate the implicit free
surface form of the pressure inverter.

Line 27
— startTime=0,

— this line indicates that the experiment should start from ¢ = 0 and implicitly suppresses searching for
checkpoint files associated with restarting an numerical integration from a previously saved state.

Line 29
— endTime=12000,

— this line indicates that the experiment should start finish at £ = 12000s. A restart file will be written at this
time that will enable the simulation to be continued from this point.

Line 30

— deltaTmom=1200,

— This line sets the momentum equation timestep to 1200s.
Line 39

— usingCartesianGrid=.TRUE.,

— This line requests that the simulation be performed in a Cartesian coordinate system.
Line 41

— delX=60%20E3,

— This line sets the horizontal grid spacing between each x-coordinate line in the discrete grid. The syntax
indicates that the discrete grid should be comprise of 60 grid lines each separated by 20 x 103m (20
km).

Line 42
— delY=60*20E3,

— This line sets the horizontal grid spacing between each y-coordinate line in the discrete grid to 20 x 103m
(20 km).

Line 43

126

Chapter 4. MITgcm Tutorial Example Experiments

MITgcm Documentation, Release 1.0

— delZ=5000,

— This line sets the vertical grid spacing between each z-coordinate line in the discrete grid to 5000m (5 km).

* Line 46
— bathyFile="topog.box’

— This line specifies the name of the file from which the domain bathymetry is read. This file is a two-
dimensional (x, y) map of depths. This file is assumed to contain 64-bit binary numbers giving the depth
of the model at each grid cell, ordered with the x coordinate varying fastest. The points are ordered from
low coordinate to high coordinate for both axes. The units and orientation of the depths in this file are the
same as used in the MITgcm code. In this experiment, a depth of O m indicates a solid wall and a depth of
-5000 m indicates open ocean. The matlab program input/gendata.m shows an example of how to generate

a bathymetry file.
* Line 49

— zonalWindFile="windx.sin_y’

— This line specifies the name of the file from which the x-direction surface wind stress is read. This file is
also a two-dimensional (z, y) map and is enumerated and formatted in the same manner as the bathymetry
file. The matlab program input/gendata.m includes example code to generate a valid zonalWindFile file.

other lines in the file input/data are standard values that are described in the MITgcm Getting Started and MITgecm
Parameters notes.

Listing 4.1: verification/tutorial_barotropic_gyre/input/data

Model parameters
Continuous equation parameters
&PARMO1

tRef=20.,

sRef=10.,

viscAz=1.E-2,

viscAh=4.E2,

diffKhT=4.E2,
diffKzT=1.E-2,

beta=1.E-11,

tAlpha=2.E-4,

sBeta =0.,

gravity=9.81,

gBaro=9.81,
rigidLid=.FALSE.,
implicitFreeSurface=.TRUE.,
eosType="LINEAR',
readBinaryPrec=64,

&

Elliptic solver parameters
&PARMO2
cg2dMaxIters=1000,
cg2dTargetResidual=1.E-7,
&

Time stepping parameters
&PARMO3

startTime=0,
#endTime=311040000,
endTime=12000.0,

(continues on next page)

4.1. Barotropic Gyre MiTgcm Example

127

40

41

42

43

44

45

46

47

48

49

50

51

53

54

56

57

MITgcm Documentation, Release 1.0

(continued from previous page)

deltaTmom=1200.0,
deltaTtracer=1200.0,
abEps=0.1,
pChkptFreq=2592000.0,
chkptFreg=120000.0,
dumpFreg=2592000.0,
monitorSelect=2,
monitorFreg=1.,

&

Gridding parameters

&PARMO4
usingCartesianGrid=.TRUE.,
usingSphericalPolarGrid=.FALSE.,
delX=60%20E3,

delY=60%20E3,

delz=5000.,

&

Input datasets

&PARMOS
bathyFile="topog.box"',
hydrogThetaFile=,
hydrogSaltFile=,
zonalWindFile="'windx.sin_vy',
meridWindFile=,

&

4.1.3.2 File input/data.pkg

This file uses standard default values and does not contain customizations for this experiment.

4.1.3.3 File input/eedata

This file uses standard default values and does not contain customizations for this experiment.

4.1.3.4 File input/windx.sin_y

The input/windx.sin_y file specifies a two-dimensional (z, i) map of wind stress, 7, values. The units used are Nm 2.
Although 7, is only a function of y in this experiment this file must still define a complete two-dimensional map in
order to be compatible with the standard code for loading forcing fields in MITgecm. The included matlab program
input/gendata.m gives a complete code for creating the input/windx.sin_y file.

4.1.3.5 File input/topog.box

The input/topog.box file specifies a two-dimensional (z, y) map of depth values. For this experiment values are either
0 m or —delZ m, corresponding respectively to a wall or to deep ocean. The file contains a raw binary stream of data
that is enumerated in the same way as standard MITgcm two-dimensional, horizontal arrays. The included matlab
program input/gendata.m gives a completecode for creating the input/topog.box file.

128 Chapter 4. MITgecm Tutorial Example Experiments

20
21
22
23

24

26

27

28

29

MITgcm Documentation, Release 1.0

4.1.3.6 File code/SIZE.h

Two lines are customized in this file for the current experiment
 Line 39
— sNx=60,
— this line sets the lateral domain extent in grid points for the axis aligned with the x-coordinate.
 Line 40
— sNy=60,

— this line sets the lateral domain extent in grid points for the axis aligned with the y-coordinate.

Listing 4.2: verification/tutorial_barotropic_gyre/code/SIZE.h

C

C [==\
C | SIZE.h Declare size of underlying computational grid. |
c | s=======ss=s=ss== |
C | The design here support a three-dimensional model grid

C | with indices I,J and K. The three-dimensional domain |
C | is comprised of nPx*nSx blocks of size sNx along one axis|
C | nPy*nSy blocks of size sNy along another axis and one \
C | block of size Nz along the final axis.

C | Blocks have overlap regions of size OLx and OLy along the|
C | dimensions that are subdivided.

c \==/
C Voodoo numbers controlling data layout.

C sNx — No. X points in sub-grid.

C sNy — No. Y points in sub-grid.

C OLx - Overlap extent in X.

C OLy - Overlat extent in Y.

C nSx - No. sub-grids in X.

C nSy - No. sub-grids in Y.

C nPx - No. of processes to use in X.

C nPy - No. of processes to use in Y.

C Nx - No. points in X for the total domain.

C Ny - No. points in Y for the total domain.

C Nr - No. points in R for full process domain.

INTEGER sNx
INTEGER sNy
INTEGER OLx
INTEGER OLy
INTEGER nSx
INTEGER nSy
INTEGER nPx
INTEGER nPy

INTEGER Nx

INTEGER Ny

INTEGER Nr

PARAMETER (
& sNx = 30,
& sNy = 30,
& OLx = 2,
& OLy = 2,
& nsSx = 2,
& nsSy = 2,

(continues on next page)

4.1. Barotropic Gyre MiTgcm Example

129

43

44

45

46

47

48

49

50

51

52

53

54

55

56

MITgcm Documentation, Release 1.0

(continued from previous page)

& nPx = 1,

& nPy = 1,

& Nx = sNxx*nSx*nPx,

& Ny = sNyxnSy=*nPy,

& Nr = 1)
C MAX_OLX - Set to the maximum overlap region size of any array
C MAX_OLY that will be exchanged. Controls the sizing of exch
C routine buufers.

INTEGER MAX_OLX
INTEGER MAX_OLY
PARAMETER (MAX_OLX OLx,
& MAX_OLY = OLy)

4.1.3.7 File code/CPP_OPTIONS.h

This file uses standard default values and does not contain customizations for this experiment.

4.1.3.8 File code/CPP_EEOPTIONS.h

This file uses standard default values and does not contain customizations for this experiment.

4.2 A Rotating Tank in Cylindrical Coordinates

(in directory: verification/rotating_tank/)

This example configuration demonstrates using the MITgcm to simulate a laboratory demonstration using a differen-
tially heated rotating annulus of water. The simulation is configured for a laboratory scale on a 3° x 1cm cyclindrical
grid with twenty-nine vertical levels of 0.5cm each. This is a typical laboratory setup for illustration principles of
GFD, as well as for a laboratory data assimilation project.

example illustration from GFD lab here

4.2.1 Equations Solved

4.2.2 Discrete Numerical Configuration

The domain is discretised with a uniform cylindrical grid spacing in the horizontal set to Aa = 1‘ cmand :
math :Delta phi=3"{circ}‘, so that there are 120 grid cells in the azimuthal direction and thirty-one grid cells in
the radial, representing a tank 62cm in diameter. The bathymetry file sets the depth=0 in the nine lowest radial rows
to represent the central of the annulus. Vertically the model is configured with twenty-nine layers of uniform 0.5cm
thickness.

something about heat flux

4.2.3 Code Configuration

The model configuration for this experiment resides under the directory verification/rotatingi_tank/.
The experiment files

130 Chapter 4. MITgcm Tutorial Example Experiments

https://github.com/MITgcm/MITgcm/blob/master/verification/rotating_tank/

MITgcm Documentation, Release 1.0

* input/data

* input/data.pkg

* input/eedata

e input/bathyPol.bin

* input/thetaPol.bin

* code/CPP_EEOPTIONS.h
* code/CPP_OPTIONS.h

* code/SIZE.h

contain the code customizations and parameter settings for this experiments. Below we describe the customizations to
these files associated with this experiment.

4.2.3.1 File input/data
This file, reproduced completely below, specifies the main parameters for the experiment. The parameters that are
significant for this configuration are
* Lines 9-10,
— viscAh=5.0E-6,
— viscAz=5.0E-6,

These lines set the Laplacian friction coefficient in the horizontal and vertical, respectively. Note that they are several
orders of magnitude smaller than the other examples due to the small scale of this example.

e Lines 13-16,

diffKhT=2.5E-6,
diffKzT=2.5E-6,
diffKhS=1.0E-6,
diffKzS=1.0E-6,

These lines set horizontal and vertical diffusion coefficients for temperature and salinity. Similarly to the friction
coefficients, the values are a couple of orders of magnitude less than most configurations.

 Line 17, f0=0.5, this line sets the coriolis term, and represents a tank spinning at about 2.4 rpm.
* Lines 23 and 24

— rigidLid=.TRUE.,

— implicitFreeSurface=.FALSE.,

These lines activate the rigid lid formulation of the surface pressure inverter and suppress the implicit free surface
form of the pressure inverter.

e Line 40,
— nlter=0,

This line indicates that the experiment should start from $t=0$ and implicitly suppresses searching for checkpoint files
associated with restarting an numerical integration from a previously saved state. Instead, the file thetaPol.bin will be
loaded to initialized the temperature fields as indicated below, and other variables will be initialized to their defaults.

e Line 43,

4.2. A Rotating Tank in Cylindrical Coordinates 131

MITgcm Documentation, Release 1.0

— deltaT=0.1,

This line sets the integration timestep to $0.1s$. This is an unsually small value among the examples due to the small
physical scale of the experiment. Using the ensemble Kalman filter to produce input fields can necessitate even shorter
timesteps.

¢ Line 56,
— usingCylindricalGrid=.TRUE.,
This line requests that the simulation be performed in a cylindrical coordinate system.
e Line 57,
— dXspacing=3,

This line sets the azimuthal grid spacing between each x-coordinate line in the discrete grid. The syntax indicates
that the discrete grid should be comprised of 120 grid lines each separated by $3”{circ}$.

* Line 58,
— dYspacing=0.01,
This line sets the radial cylindrical grid spacing between each a-coordinate line in the discrete grid to 1em.
e Line 59,
— delZ=29%0.005,

This line sets the vertical grid spacing between each of 29 z-coordinate lines in the discrete grid to $0.005m$

(5~mm).
¢ Line 64,
— bathyFile="bathyPol.bin’,

This line specifies the name of the file from which the domain ‘bathymetry’ (tank depth) is read. This file is a two-
dimensional (a, ¢) map of depths. This file is assumed to contain 64-bit binary numbers giving the depth of the model
at each grid cell, ordered with the phi coordinate varying fastest. The points are ordered from low coordinate to
high coordinate for both axes. The units and orientation of the depths in this file are the same as used in the MITgcm
code. In this experiment, a depth of $0m$ indicates an area outside of the tank and a depth f —0.145m indicates the
tank itself.

e Line 65,
— hydrogThetaFile="thetaPol.bin’,

This line specifies the name of the file from which the initial values of temperature are read. This file is a three-
dimensional (x, i, z) map and is enumerated and formatted in the same manner as the bathymetry file.

e Lines 66 and 67
- tCylln =0
— tCylOut = 20

These line specify the temperatures in degrees Celsius of the interior and exterior walls of the tank — typically taken to
be icewater on the inside and room temperature on the outside.

Other lines in the file input/data are standard values that are described in the MITgem Getting Started and MITgecm
Parameters notes.

132 Chapter 4. MITgecm Tutorial Example Experiments

20

21

22

23

24

25

26

27

28

29

40

41

42

43

44

45

46

47

48

49

50

51

53

54

55

56

MITgcm Documentation, Release 1.0

Listing 4.3: verification/rotating_tank/input/data

Continuous equation parameters
&PARMO1

tRef=29%20.0,
sRef=29%35.0,
viscAh=5.0E-6,
viscAz=5.0E-6,
no_slip_sides=.FALSE.,
no_slip_bottom=.FALSE.,
diffKhT=2.5E-6,
diffKzT=2.5E-6,
diffKhS=1.0E-6,
diffKzS=1.0E-6,
£0=0.5,
eosType="LINEAR',
sBeta =0.,
gravity=9.81,
rhoConst=1000.0,
rhoNil=1000.0,

#heatCapacity Cp=3900.0,
rigidLid=.TRUE.,
implicitFreeSurface=.FALSE.,
nonHydrostatic=.TRUE.,
readBinaryPrec=32,
&

Elliptic solver parameters
&PARMO2

cg2dMaxIters=1000,
cg2dTargetResidual=1.E-7,
cg3dMaxIters=10,
cg3dTargetResidual=1.E-9,

&

Time stepping parameters
&PARMO3

nIter0=0,
nTimeSteps=20,
#nTimeSteps=36000000,
deltaT=0.1,
abEps=0.1,
pChkptFreqg=2.0,
#chkptFreqg=2.0,
dumpFreqg=2.0,
monitorSelect=2,
monitorFreg=0.1,

&

Gridding parameters
&PARMO4
usingCylindricalGrid=.TRUE.,
dXspacing=3.,
d¥Yspacing=0.01,

(continues on next page)

4.2. A Rotating Tank in Cylindrical Coordinates 133

57

59

60

61

62

63

64

65

66

MITgcm Documentation, Release 1.0

(continued from previous page)

delZ=29%0.005,
ygOrigin=0.07,
&

Input datasets
&PARMOS
hydrogThetaFile="thetaPolR.bin"',
bathyFile='"'bathyPolR.bin',
tCylIn = 0.,
tCylOut = 20.,
&

4.2.3.2 File input/data.pkg

This file uses standard default values and does not contain customizations for this experiment.

4.2.3.3 File input/eedata

This file uses standard default values and does not contain customizations for this experiment.

4.2.3.4 File input/thetaPol.bin

The {it input/thetaPol.bin} file specifies a three-dimensional (x,y,z) map of initial values of $theta$ in degrees
Celsius. This particular experiment is set to random values x around 20C to provide initial perturbations.

4.2.3.5 File input/bathyPol.bin

The {it input/bathyPol.bin} file specifies a two-dimensional (x,y) map of depth values. For this experiment values
are either $0m$ or {bf -delZ}m, corresponding respectively to outside or inside of the tank. The file contains a raw
binary stream of data that is enumerated in the same way as standard MITgcm two-dimensional, horizontal arrays.

4.2.3.6 File code/SIZE.h

Two lines are customized in this file for the current experiment
e Line 39, - sNx=120,

this line sets the lateral domain extent in grid points for the axis aligned with the x-coordinate.
* Line 40, - sNy=31,

this line sets the lateral domain extent in grid points for the axis aligned with the y-coordinate.

Listing 4.4: verification/rotating_tank/code/SIZE.h

| The design here support a three-dimensional model grid |
| with indices I,J and K. The three-dimensional domain |
| is comprised of nPx*nSx blocks of size sNx along one axis|

QOO0
n
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il

(continues on next page)

134 Chapter 4. MITgcm Tutorial Example Experiments

32

33

34

35

36

37

38

39

40

41

43

44

45

46

47

48

49

51

52

54

55

MITgcm Documentation, Release 1.0

(continued from previous page)

| nPy*nSy blocks of size sNy along another axis and one \
| block of size Nz along the final axis. \
| Blocks have overlap regions of size OLx and OLy along the|
| dimensions that are subdivided.

Voodoo numbers controlling data layout.
sNx — No. X points in sub-grid.
sNy — No. Y points in sub-grid.
OLx - Overlap extent in X.
OLy - Overlat extent in Y.
nSx - No. sub-grids in X.
nSy - No. sub-grids in Y.
nPx — No. of processes to use in X.
nPy - No. of processes to use in Y.
Nx - No. points in X for the total domain.
Ny - No. points in Y for the total domain.
Nr - No. points in Z for full process domain.
INTEGER sNx
INTEGER sNy
INTEGER OLx
INTEGER OLy
INTEGER nSx
INTEGER nSy
INTEGER nPx
INTEGER nPy
INTEGER Nx
INTEGER Ny
INTEGER Nr
PARAMETER (
sNx = 30,
sNy = 23,
OLx = 3,
OLy = 3
nsSx = 4,
1
1

QOO0

nsy =
nPx =
nPy = 1,
Nx = sNxx*nSx*nPx,
Ny = sNyxnSy#*nPy,
Nr = 29)

R R R

C MAX_OLX - Set to the maximum overlap region size of any array
MAX_OLY that will be exchanged. Controls the sizing of exch
C routine buufers.
INTEGER MAX_OLX
INTEGER MAX_OLY
PARAMETER (MAX_OLX = OLx%,
& MAX_OLY = OLy)

Q

4.2.3.7 File code/CPP_OPTIONS.h

This file uses standard default values and does not contain customizations for this experiment.

4.2. A Rotating Tank in Cylindrical Coordinates

135

MITgcm Documentation, Release 1.0

4.2.3.8 File code/CPP_EEOPTIONS.h

This file uses standard default values and does not contain customizations for this experiment.

136 Chapter 4. MITgecm Tutorial Example Experiments

CHAPTER B

Contributing to the MITgcm

The MITgcm is an open source project that relies on the participation of its users, and we welcome contributions. This
chapter sets out how you can contribute to the MITgcm.

5.1 Bugs and feature requests

If you think you’ve found a bug, the first thing to check that you’re using the latest version of the model. If the bug
is still in the latest version, then think about how you might fix it and file a ticket in the GitHub issue tracker. Please
include as much detail as possible. At a minimum your ticket should include:

» what the bug does;
¢ the location of the bug: file name and line number(s); and
* any suggestions you have for how it might be fixed.
To request a new feature, or guidance on how to implement it yourself, please open a ticket with the following details:
* aclear explanation of what the feature will do; and

* a summary of the equations to be solved.

5.2 Using Git and Github

To contribute to the source code of the model you will need to fork the repository and place a pull request on GitHub.
The two following sections describe this process in different levels of detail. If you are unfamiliar with git, you may
wish to skip the quickstart guide and use the detailed instructions. All contributions to the source code are expected
to conform with the Coding style guide. Contributions to the manual should follow the same procedure and conform
with Section 5.4.

137

https://github.com/MITgcm/MITgcm/issues

MITgcm Documentation, Release 1.0

5.2.1 Quickstart Guide

o

. Fork the project on GitHub (using the fork button).

2. Create a local clone (we strongly suggest keeping a separate repository for development work):

% git clone https://github.com/user_name/MITgcm.git

3. Move into your local clone directory (cd MITgcm) and and set up a remote that points to the original:

% git remote add upstream https://github.com/MITgcm/MITgcm.git

4. Make a new branch from upstream/master (name it something appropriate, here we call the new feature
branch newfeature) and make edits on this branch:

o
)

git fetch upstream
% git checkout -b newfeature upstream/master

5. When edits are done, do all git add’s and git commit’s. In the commit message, make a succinct (<70 char)
summary of your changes. If you need more space to describe your changes, you can leave a blank line and type a
longer description, or break your commit into multiple smaller commits. Reference any outstanding issues addressed
using the syntax #I SSUE_NUMBER.

6. Push the edited branch to the origin remote (i.e. your fork) on GitHub:

)

% git push -u origin newfeature

7. On GitHub, go to your fork and hit the pull request (PR) button, and wait for the MITgcm head developers to review
your proposed changes. In general the MITgcm code reviewers try to respond to a new PR within a week. A response
may accept the changes, or may request edits and changes. Occasionally the review team will reject changes that are
not sufficiently aligned with and do not fit with the code structure. The review team is always happy to discuss their
decisions, but wants to avoid people investing extensive effort in code that has a fundamental design flaw. The current
review team is Jean-Michel Campin, Ed Doddridge, Chris Hill and Oliver Jahn.

If you want to update your code branch before submitting a PR (or any point in development), follow the recipe below.
It will ensure that your GitHub repo stays up to date with the main repository. Note again that your edits should always
be to a development branch (here, newfeature), not the master branch.

o\

git checkout master

git pull upstream master
git push origin master
git checkout newfeature
git merge master

o

o° oo

o

If you prefer, you can rebase rather than merge in the final step above; just be careful regarding your rebase syntax!

5.2.2 Detailed guide for those less familiar with Git and GitHub

What is Git? Git is a version control software tool used to help coordinate work among the many MITgcm model
contributors. Version control is a management system to track changes in code over time, not only facilitating ongoing
changes to code, but also as a means to check differences and/or obtain code from any past time in the project history.
Without such a tool, keeping track of bug fixes and new features submitted by the global network of MITgcm contrib-
utors would be virtually impossible. If you are familiar with the older form of version control used by the MITgcm
(CVS), there are many similarities, but we now take advantage of the modern capabilities offered by Git.

Git itself is open source linux software (typically included with any new linux installation, check with your sys-admin
if it seems to be missing) that is necessary for tracking changes in files, etc. through your local computer’s terminal

138 Chapter 5. Contributing to the MITgcm

https://en.wikipedia.org/wiki/Git

MITgcm Documentation, Release 1.0

session. All Git-related terminal commands are of the form git <arguments>. Important functions include
syncing or updating your code library, adding files to a collection of files with edits, and commands to “finalize” these
changes for sending back to the MITgcm maintainers. There are numerous other Git command-line tools to help along
the way (see man pages viaman git).

The most common git commands are:
* git clone download (clone) a repository to your local machine
* git status obtain information about the local git repository

e git diff highlight differences between the current version of a file and the version from the most recent
commit

* git add stage a file, or changes to a file, so that they are ready for git commit

e git commit create a commit. A commit is a snapshot of the repository with an associated message that
describes the changes.

What is GitHub then? GitHub is a website that has three major purposes: 1) Code Viewer: through your browser, you
can view all source code and all changes to such over time; 2) “Pull Requests™: facilitates the process whereby code
developers submit changes to the primary MITgcm maintainers; 3) the “Cloud”: GitHub functions as a cloud server
to store different copies of the code. The utility of #1 is fairly obvious. For #2 and #3, without GitHub, one might
envision making a big tarball of edited files and emailing the maintainers for inclusion in the main repository. Instead,
GitHub effectively does something like this for you in a much more elegant way. Note unlike using (linux terminal
command) git, GitHub commands are NOT typed in a terminal, but are typically invoked by hitting a button on the
web interface, or clicking on a webpage link etc. To contribute edits to MITgcm, you need to obtain a github account.
It’s free; do this first if you don’t have one already.

Before you start working with git, make sure you identify yourself. From your terminal, type:

oe

git config —--global user.email your_email@example.edu
git config —--global user.name ‘John Doe’

o\

(note the required quotes around your name). You should also personalize your profile associated with your GitHub
account.

There are many online tutorials to wusing Git and GitHub (see for example https://akrabat.com/
the-beginners-guide-to-contributing-to-a-github-project); here, we are just communicating the basics neces-
sary to submit code changes to the MITgecm. Spending some time learning the more advanced features of Git will
likely pay off in the long run, and not just for MITgcm contributions, as you are likely to encounter it in all sorts of
different projects.

To better understand this process, Figure 5.1 shows a conceptual map of the Git setup. Note three copies of the code:
the main MITgcm repository sourcecode “upstream” (i.e., owned by the MITgecm maintainers) in the GitHub cloud,
a copy of the repository “origin” owned by you, also residing in the GitHub cloud, and a local copy on your personal
computer or compute cluster (where you intend to compile and run). The Git and GitHub commands to create this
setup are explained more fully below.

One other aspect of Git that requires some explanation to the uninitiated: your local linux copy of the code repository
can contain different “branches”, each branch being a different copy of the code repository (this can occur in all git-
aware directories). When you switch branches, basic unix commands such as 1s or cat will show a different set of
files specific to current branch. In other words, Git interacts with your local file system so that edits or newly created
files only appear in the current branch, i.e., such changes do not appear in any other branches. So if you swore you
made some changes to a particular file, and now it appears those changes have vanished, first check which branch you
areon (git status is a useful command here), all is probably not lost.

A detailed explanation of steps for contributing MITgcm repository edits:

5.2. Using Git and Github 139

https://akrabat.com/the-beginners-guide-to-contributing-to-a-github-project
https://akrabat.com/the-beginners-guide-to-contributing-to-a-github-project

MITgcm Documentation, Release 1.0

“‘upstream” “origin”
fork
MITgcm » | MITgcm
main repo < your repo
pull request
git clone it bush
gitpun | |9"P
git pull upstream
MITgcm
local copy

Figure 5.1: A conceptual map of the GitHub setup. Git terminal commands are shown in red, GitHub commands are
shown in green.

140 Chapter 5. Contributing to the MITgcm

MITgcm Documentation, Release 1.0

1. On GitHub, create a local copy of the repository in your GitHub cloud user space: from the main repository
(https://github.com/MITgcm/MITgem) hit the Fork button. As mentioned, your GitHub copy “origin” is necessary to
streamline the collaborative development process — you need to create a place for your edits in the GitHub cloud, for
developers to peruse.

2. Download the code onto your local computer using the git clone command. Even if you previously downloaded
the code through a “git-aware” method (i.e., a git clone command, see Section 3.2.1), we STRONGLY SUGGEST
you download a fresh repository, to a separate disk location, for your development work (keeping your research work
separate). Type:

% git clone https://github.com/your_github_user_name/MITgcm.git

from your terminal (technically, here you are copying the forked “origin” version from the cloud, not the “upstream”
version, but these will be identical at this point).

3. Move into the local clone directory on your computer:

% cd MITgcm

We need to set up a remote that points to the main repository:

)

% git remote add upstream https://github.com/MITgcm/MITgcm.git

This means that we now have two “remotes” of the project. A remote is just a pointer to a repository not on your
computer, i.e., in the GitHub cloud, one pointing to your GitHub user space (“origin”), and this new remote pointing
to the original (“upstream”). You can read and write into your “origin” version (since it belongs to you, in the cloud),
but not into the “upstream” version. This command just sets up this remote, which is needed in step #4 — no actual file
manipulation is done at this point. If in doubt, the command git remote -v will list what remotes have been set

up.

4. Next make a new branch.

% git fetch upstream
% git checkout -b newfeature upstream/master

You will make edits on this new branch, to keep these new edits completely separate from all files on the master branch.
The first command git fetch upstream makes sure your new branch is the latest code from the main repository;
as such, you can redo step 4 at any time to start additional, separate development projects (on a separate, new branch).
Note that this second command above not only creates this new branch, which we name newfeature, from the
upstream/master branch, it also switches you onto this newly created branch. Naming the branch something
more descriptive than ‘newfeature’ is helpful.

5. Doing stuff! This usually comes in one of three flavors:

1) cosmetic changes, formatting, documentation, etc.;
ii) fixing bug(s), or any change to the code which results in different numerical output; or
iii) adding a feature or new package.

To do this you should:

« edit the relevant file(s) and/or create new files. Refer to Coding style guide for details on expected documentation
standards and code style requirements. Of course, changes should be thoroughly tested to ensure they compile
and run successfully!

* type git add <FILENAME1l> <FILENAME2> ... to stage the file(s) ready for a commit command (note
both existing and brand new files need to be added). “Stage” effectively means to notify Git of the the list of files

5.2. Using Git and Github 141

https://github.com/MITgcm/MITgcm

MITgcm Documentation, Release 1.0

you plan to “commit” for changes into the version tracking system. Note you can change other files and NOT
have them sent to model developers; only staged files will be sent. You can repeat this git add command
as many times as you like and it will continue to augment the list of files. git diff and git status are
useful commands to see what you have done so far.

e use git commit to commit the files. This is the first step in bundling a collection of files together to be sent
off to the MITgcm maintainers. When you enter this command, an editor window will pop up. On the top line,
type a succinct (<70 character) summary of what these changes accomplished. If your commit is non-trivial and
additional explanation is required, leave a blank line and then type a longer description of why the action in this
commit was appropriate etc. It is good practice to link with known issues using the syntax # ISSUE_NUMBER
in either the summary line or detailed comment. Note that all the changes do not have to be handled in a single
commit (i.e. you can git add some files, do a commit, than continue anew by adding different files, do another
commit etc.); the git commit command itself does not (yet) submit anything to maintainers.

* if you are fixing a more involved bug or adding a new feature, such that many changes are required, it is
preferable to break your contribution into multiple commits (each documented separately) rather than submitting
one massive commit; each commit should encompass a single conceptual change to the code base, regardless of
how many files it touches. This will allow the MITgcm maintainers to more easily understand your proposed
changes and will expedite the review process.

« if you make any change to the code, however small, i.e., flavor ii or iii above, we expect you to add your changes
to the top of doc/tag-index (starting at line 4), which is a running history of all development of the MITgcm.
Again, be concise, describing your changes in one or several lines of text. We will not accept code changes
without this edit.

When your changes are tested and documented, continue on to step #6, but read all of step #6 and #7 before proceeding;
you might want to do an optional “bring my development branch up to date” sequence of steps before step #6.

6. Now we “push” our modified branch with committed changes onto the origin remote in the GitHub cloud. This
effectively updates your GitHub cloud copy of the MITgcm repo to reflect the wonderful changes you are contributing.

)

% git push -u origin newfeature

Some time might elapse during step #5, as you make and test your edits, during which continuing development occurs
in the main MITgcm repository. In contrast with some models that opt for static, major releases, the MITgcm is in
a constant state of improvement and development. It is very possible that some of your edits occur to files that have
also been modified by others; in fact, it is very likely doc/tag-index will have been updated in the main repo if even a
week has elapsed. Your local clone however will not know anything about any changes that may have occurred to the
MITgcm repo in the cloud, which may cause an issue in step #7 below, when one of three things will occur:

* the files you have modified in your development have NOT been modified in the main repo during this elapsed
time, thus git will have no conflicts in trying to update (i.e. merge) your changes into the main repo.

¢ during the elapsed time, the files you have modified have also been edited/updated in the main repo, but you
edited different places in these files than those edits to the main repo, such that git is smart enough to be able to
merge these edits without conflict.

* during the elapsed time, the files you have modified have also been edited/updated in the main repo, but git is
not smart enough to know how to deal with this conflict (it will notify you of this problem during step #7).

One option is to NOT attempt to bring your development code branch up to date, instead simply proceed with steps
#6 and #7 and let the maintainers assess and resolve any conflict(s), should such occur (there is a checkbox ‘Allow
edits by maintainers’ that is checked by default when you do step #7). If very little time elapsed during step #5, such
conflict is less likely (exception would be to doc/tag-index, which the maintainers can easily resolve). However, if step
#5 takes on the order of months, we do suggest you follow this recipe below to update the code and merge yourself.
And/or during the development process, you might have reasons to bring the latest changes in the main repo into your
development branch, and thus might opt to follow these same steps.

Development branch code update recipe:

142 Chapter 5. Contributing to the MITgcm

https://github.com/MITgcm/MITgcm/blob/master/doc/tag-index
https://github.com/MITgcm/MITgcm/blob/master/doc/tag-index
https://github.com/MITgcm/MITgcm/blob/master/doc/tag-index

MITgcm Documentation, Release 1.0

oe

git checkout master

git pull upstream master
git push origin master
git checkout newfeature
git merge master

o° o oP

o°

This first command switches you from your development branch to the master branch. The second command above
will synchronize your local master branch with the main MITgcm repository master branch (i.e. “pull” any new
changes that might have occurred in the upstream repository into your local clone). Note you should not have made
any changes to your clone’s master branch; in other words, prior to the pull, master should be a stagnant copy of
the code from the day you performed step #1 above. The git push command does the opposite of pull, so in the
third step you are synchronizing your GitHub cloud copy (“origin”) master branch to your local clone’s master branch
(which you just updated). Then, switch back to your development branch via the second git checkout command.
Finally, the last command will merge any changes into your development branch. If conflicts occur that git cannot
resolve, git will provide you a list of the problematic file names, and in these files, areas of conflict will be demarcated.
You will need to edit these files at these problem spots (while removing git’s demarcation text), then doa git add
FILENAME for each of these files, followed by a final git commit to finish off the merger.

Some additional git diff commands to help sort out file changes, in case you want to assess the scope of devel-
opment changes, are as follows. git diff master upstream/master will show you all differences between
your local master branch and the main MITgcm repo, i.e., so you can peruse what parallel MITgcm changes have
occurred while you were doing your development (this assumes you have not yet updated your clone’s master branch).
You can check for differences on individual files via git diff master upstream/master <FILENAME>.
If you want to see all differences in files you have modified during your development, the command is git diff
master. Similarly, to see a combined list of both your changes and those occurring to the main repo, git diff
upstream/master.

Aside comment: if you are familiar with git, you might realize there is an alternate way to merge, using the “rebase”
syntax. If you know what you are doing, feel free to use this command instead of our suggested merge command
above.

7. Finally create a “pull request” (a.k.a. “PR”; in other words, you are requesting that the maintainers pull your
changes into the main code repository). In GitHub, go to the fork of the project that you made (https://github.com/
your_github_user_name/MITgcm.git). There is a button for “Compare and Pull” in your newly created branch. Click
the button! Now you can add a final succinct summary description of what you’ve done in your commit(s), and flag
up any issues. The maintainers will now be notified and be able to peruse your changes! In general, the maintainers
will try to respond to a new PR within a week. While the PR remains open, you can go back to step #5 and make
additional edits, git adds, git commits, and then redo step #6; such changes will be added to the PR (and maintainers
re-notified), no need to redo step #7.

Your pull request remains open until either the maintainers fully accept and merge your code changes into the main
repository, or decide to reject your changes (occasionally, the review team will reject changes that are not sufficiently
aligned with and do not fit with the code structure). But much more likely than the latter, you will instead be asked
to respond to feedback, modify your code changes in some way, and/or clean up your code to better satisfy our style
requirements, etc., and the pull request will remain open instead of outright rejection. The review team is always
happy to discuss their decisions, but wants to avoid people investing extensive effort in code that has a fundamental
design flaw.

It is possible for other users (besides the maintainers) to examine or even download your pull request; see Reviewing
pull requests.

The current review team is Jean-Michel Campin, Ed Doddridge, Chris Hill and Oliver Jahn.

5.2. Using Git and Github 143

https://github.com/your_github_user_name/MITgcm.git
https://github.com/your_github_user_name/MITgcm.git

MITgcm Documentation, Release 1.0

5.3 Coding style guide

Detailed instructions or link to be added.

5.3.1 Automatic testing with Travis-ClI

The MITgcm uses the continuous integration service Travis-CI to test code before it is accepted into the repository.
When you submit a pull request your contributions will be automatically tested. However, it is a good idea to test
before submitting a pull request, so that you have time to fix any issues that are identified. To do this, you will need to
activate Travis-CI for your fork of the repository.

Detailed instructions or link to be added.

5.4 Contributing to the manual

Whether you are simply correcting typos or describing undocumented packages, we welcome all contributions to the
manual. The following information will help you make sure that your contribution is consistent with the style of the
MITgcem documentation. (We know that not all of the current documentation follows these guidelines - we’re working
on it)

The manual is written in rst format, which is short for ReStructuredText directives. rst offers many wonderful features:
it automatically does much of the formatting for you, it is reasonably well documented on the web (e.g. primers
available here and here), it can accept raw latex syntax and track equation labelling for you, in addition to numerous
other useful features. On the down side however, it can be very fussy about formatting, requiring exact spacing and
indenting, and seemingly innocuous things such as blank spaces at ends of lines can wreak havoc. We suggest looking
at the existing rst files in the manual to see exactly how something is formatted, along with the syntax guidelines
specified in this section, prior to writing and formatting your own manual text.

The manual can be viewed either of two ways: interactively (i.e., web-based), as hosted by read-the-docs (https:
//readthedocs.org/), requiring an html format build, or downloaded as a pdf file. When you have completed your
documentation edits, you should double check both versions are to your satisfaction, particularly noting that figure
sizing and placement may be render differently in the pdf build.

5.4.1 Section headings

» Chapter headings - these are the main headings with integer numbers - underlined with % x %
* section headings - headings with number format X.Y - underlined with ====

* Subsection headings - headings with number format X.Y.Z - underlined with ——-—

» Subsubsection headings - headings with number format X.Y.Z.A - underlined with +++
 Paragraph headings - headings with no numbers - underlined with ###

N.B. all underlinings should be the same length as the heading. If they are too short an error will be produced.

5.4.2 Internal document references

rst allows internal referencing of figures, tables, section headings, and equations, i.e. clickable links that bring the
reader to the respective figure etc. in the manual. To be referenced, a unique label is required. To reference figures,
tables, or section headings by number, the rst (inline) directive is :numref: LABELNAME . For example, this
syntax would write out Figure XX on a line (assuming LABELNAME referred to a figure), and when clicked,

144 Chapter 5. Contributing to the MITgcm

http://www.sphinx-doc.org/en/stable/rest.html
http://docutils.sourceforge.net/docs/user/rst/quickref.html
https://readthedocs.org/
https://readthedocs.org/

MITgcm Documentation, Release 1.0

would relocate your position in the manual to figure XX. Section headings can also be referenced so that the name is
written out instead of the section number, instead using this directive : ref: " LABELNAME .

Equation references have a slightly different inline syntax: :eq: LABELNAME' will produce a clickable equation
number reference, surrounded by parentheses.

For instructions how to assign a label to tables and figures, see below. To label a section heading, labels go above the
section heading they refer to, with the format . . _LABELNAME :. Note the necessary leading underscore. You can
also place a clickable link to any spot in the text (e.g., mid-section), using this same syntax to make the label, and
using the syntax :ref: some_text_to_clickon <LABELNAME>" for the link.

5.4.3 Other embedded links

Hyperlinks: to reference a (clickable) URL, simply enter the full URL. If you want to have a different, clickable text
link instead of displaying the full URL, the syntax is ~clickable_text <URL>_ (the ‘<’ and *>’ are literal
characters, and note the trailing underscore).

File references: to create a link to pull up MITgcm code (or any file in the repo) in a code browser window, the syntax
is :filelink: path/filename’. If you want to have a different text link to click on (e.g., say you didn’t want
to display the full path), the syntax is : filelink: clickable_text <path/filename>" (again, the ‘<‘
and ‘>’ are literal characters). The top directory here is https://github.com/MITgem/MITgem , so if for example you
wanted to pop open the file dynamics.F from the main model source directory, you would specify model/src/
dynamics.F in place of path/filename.

Variable references: to create a link to bring up a webpage displaying all MITgcm repo references
to a particular variable name (for this purpose we are using the LXR Cross Referencer), the syntax is
:varlink: name_of_ variable’.

5.4.4 Symbolic Notation

Inline math is done with :math: LATEX_HERE"

Separate equations, which will be typeset on their own lines, are produced with:

. math::
LATEX_HERE
:label: EQN_LABEL_HERE

Labelled separate equations are assigned an equation number, which may be referenced elsewhere in the document
(see Section 5.4.2). Omitting the : 1label: above will still produce an equation on its own line, except without an
equation label. Note that using latex formatting \begin{aligned} ... \end{aligned} across multiple lines of
equations will not work in conjunction with unique equation labels for each separate line (any embedded formatting &
characters will cause errors too). Latex alignment will work however if you assign a single label for the multiple lines
of equations.

Discuss conversion of .tex files.

5.4.5 Figures

The syntax to insert a figure is as follows:

figure:: pathname/filename. *
:width: 80%
ralign: center

(continues on next page)

5.4. Contributing to the manual 145

https://github.com/MITgcm/MITgcm
https://github.com/MITgcm/MITgcm/blob/master/model/src/dynamics.F

MITgcm Documentation, Release 1.0

(continued from previous page)

tralt: text description of figure here
:name: myfigure

The figure caption goes here as a single line of text.

figure: :: The figure file is located in subdirectory pathname above; in practice, we have located figure files in
subdirectories £1gs off each manual chapter subdirectory. The wild-card is used here so that different file formats
can be used in the build process. For vector graphic images, save a pdf for the pdf build plus a svg file for the html
build. For bitmapped images, gif, png, or jpeg formats can be used for both builds, no wild-card necessary (see
here for more info on compatible formats).

:width:: used to scale the size of the figure, here specified as 80% scaling factor (check sizing in both the pdf and
html builds, as you may need to adjust the figure size within the pdf file independently).

ralign:: can be right, center, or left.
:name : use this name when you refer to the figure in the text, i.e. :numref: myfigure'.

Note the indentation and line spacing employed above.

5.4.6 Tables

There are two syntaxes for tables in reStructuredText. Grid tables are more flexible but cumbersome to create. Simple
tables are easy to create but limited (no row spans, etc.). The raw rst syntax is shown first, then the output.

Grid Table Example:
fom Fom e fom +
| Header 1 | Header 2 | Header 3 |
t============f============f===========1
| body row 1 | column 2 | column 3 |
o —— o fo— +
| body row 2 | Cells may span columns. |
Fom Fom e Fom +
| body row 3 | Cells may | - Cells |
Fmmm + span rows. | — contain
| body row 4 | | — blocks. |
fom Fom———— Fom +
Header 1 Header 2 Header 3
body row 1 column 2 column 3
body row 2 Cells may span columns.
body row 3 Cells may span rows. * Cells
* contain
body row 4 * blocks.
Simple Table Example:
Inputs Output
A B A or B

False False False
True False True

(continues on next page)

146 Chapter 5. Contributing to the MITgcm

http://www.sphinx-doc.org/en/stable/builders.html

MITgcm Documentation, Release 1.0

(continued from previous page)

False True True
True True True

Inputs Output
A B AorB
False | False | False
True | False | True
False | True | True
True | True | True

Note that the spacing of your tables in your . rst file(s) will not match the generated output; rather, when you build
the final output, the rst builder (Sphinx) will determine how wide the columns need to be and space them appropriately.

5.4.7 Other text blocks

To set several lines apart in an whitespace box, e.g. useful for showing lines in from a terminal session, rst uses : : to
set off a ‘literal block’. For example:

o\

unix_command_foo
% unix_command_fum

(note the : : would not appear in the output html) A splashier way to outline a block, including a box label, is to
employ what is termed in rst as an ‘admonition block’. In the manual these are used to show calling trees and for
describing subroutine inputs and outputs. An example of a subroutine input/output block is as follows:

This is an admonition block showing subroutine in/out syntax

.. admonition:: SUBROUTINE_NAME
:class: note

lvarl: VAR1 (WHERE_VARI1_DEFINED.h)
lvar2 : VAR1 (WHERE_VAR2_DEFINED.h)
lvar3d : VAR1 (WHERE_VAR3_DEFINED.h)

An example of a subroutine in/out admonition box in the documentation is here.

An example of a calling tree in the documentation is sere.

5.4.8 Other style conventions

Units should be typeset in normal text, with a space between a numeric value and the unit, and exponents added with
the : sup: command.

5.4. Contributing to the manual 147

https://github.com/MITgcm/MITgcm/blob/master//model/src/subroutine_name.F
https://github.com/MITgcm/MITgcm/blob/master//model/inc/where_var1_defined.h
https://github.com/MITgcm/MITgcm/blob/master//model/inc/where_var2_defined.h
https://github.com/MITgcm/MITgcm/blob/master//model/inc/where_var3_defined.h

MITgcm Documentation, Release 1.0

9.8 m/s\ :sup: 2"

will produce 9.8 m/s?. If the exponent is negative use two dashes —— to make the minus sign sufficiently long. The
backslash removes the space between the unit and the exponent.

Alternatively, latex :math: directives (see above) may also be used to display units, using the \text { } syntax to
display non-italic characters.

* double quotes for inline literal computer command, variables, syntax etc.
* discuss how to break up sections into smaller files

e discuss | lines

5.4.9 Building the manual

Once you’ve made your changes to the manual, you should build it locally to verify that it works as expected. To do
this you will need a working python installation with the following modules installed (use pip install MODULE
in the terminal):

* sphinx
¢ sphinxcontrib-bibtex
* sphinx_rtd_theme

Then, run make html in the docs directory.

5.5 Reviewing pull requests

The only people with write access to the main repository are a small number of core MITgecm developers. They are
the people that will eventually merge your pull requests. However, before your PR gets merged, it will undergo the
automated testing on Travis-CI, and it will be assessed by the MITgcm community.

Everyone can review and comment on pull requests. Even if you are not one of the core developers you can still
comment on a pull request.

To test pull requests locally you should download the pull request branch. You can do this either by cloning the branch
from the pull request:

git clone -b BRANCHNAME https://github.com/USERNAME/MITgcm.git

where USERNAME is replaced by the username of the person proposing the pull request, and BRANCHNAME is the
branch from the pull request.

Alternatively, you can add the repository of the user proposing the pull request as a remote to your existing local
repository. Move directories in to your local repository and then

’git remote add USERNAME https://github.com/USERNAME/MITgcm.git

where USERNAME is replaced by the user name of the person who has made the pull request. Then download the
branch from the pull request

’git fetch USERNAME

and switch to the desired branch

148 Chapter 5. Contributing to the MITgcm

MITgcm Documentation, Release 1.0

git checkout —--track USERNAME/foo

You now have a local copy of the code from the pull request and can run tests locally. If you have write access to the
main repository you can push fixes or changes directly to the pull request.

None of these steps, apart from pushing fixes back to the pull request, require write access to either the main repository
or the repository of the person proposing the pull request. This means that anyone can review pull requests. However,
unless you are one of the core developers you won’t be able to directly push changes. You will instead have to make a
comment describing any problems you find.

5.5. Reviewing pull requests 149

MITgcm Documentation, Release 1.0

150 Chapter 5. Contributing to the MITgcm

CHAPTER O

Software Architecture

151

MITgcm Documentation, Release 1.0

152 Chapter 6. Software Architecture

CHAPTER /

Automatic Differentiation

153

MITgcm Documentation, Release 1.0

154 Chapter 7. Automatic Differentiation

CHAPTER 8

Packages | - Physical Parameterizations

In this chapter and in the following chapter, the MITgcm ‘packages’ are described. While you can carry out many
experiments with MITgcm by starting from case studies in section ref{sec:modelExamples}, configuring a brand new
experiment or making major changes to an experimental configuration requires some knowledge of the packages that
make up the full MITgcm code. Packages are used in MITgcm to help organize and layer various code building blocks
that are assembled and selected to perform a specific experiment. Each of the specific experiments described in section
ref{sec:modelExamples} uses a particular combination of packages.

Figure 8.1 shows the full set of packages that are available. As shown in the figure packages are classified into different
groupings that layer on top of each other. The top layer packages are generally specialized to specific simulation types.
In this layer there are packages that deal with biogeochemical processes, ocean interior and boundary layer processes,
atmospheric processes, sea-ice, coupled simulations and state estimation. Below this layer are a set of general purpose
numerical and computational packages. The general purpose numerical packages provide code for kernel numerical
algorithms that apply to many different simulation types. Similarly, the general purpose computational packages
implement non-numerical algorithms that provide parallelism, I/O and time-keeping functions that are used in many
different scenarios.

The following sections describe the packages shown in Figure 8.1. Section ref{sec:pkg:using} describes the general
procedure for using any package in MITgem. Following that sections ref{sec:pkg:gad}-ref{sec:pkg:monitor} layout
the algorithms implemented in specific packages and describe how to use the individual packages. A brief synopsis
of the function of each package is given in table ref{tab:package_summary_tab}. Organizationally package code is
assigned a separate subdirectory in the MITgcm code distribution (within the source code directory texttt{pkg}). The
name of this subdirectory is used as the package name in table ref{tab:package_summary_tab}.

8.1 Overview

8.1.1 Using MITgcm Packages

The set of packages that will be used within a partiucular model can be configured using a combination of both
“compile-time” and “run-time” options. Compile-time options are those used to select which packages will be

155

MITgcm Documentation, Release 1.0

Figure 8.1: Hierarchy of code layers that are assembled to make up an MITgcm simulation. Conceptually (and in
terms of code organization) MITgcm consists of several layers. At the base is a layer of core software that provides
a basic numerical and computational foundation for MITgcm simulations. This layer is shown marked Foundation
Code at the bottom of the figure and corresponds to code in the italicised subdirectories on the figure. This layer
is not organized into packages. All code above the foundation layer is organized as packages. Much of the code
in MITgcem is contained in packages which serve as a useful way of organizing and layering the different levels of
functionality that make up the full MITgcm software distribution. The figure shows the different packages in MITgem
as boxes containing bold face upper case names. Directly above the foundation layer are two layers of general purpose
infrastructure software that consist of computational and numerical packages. These general purpose packages can be
applied to both online and offline simulations and are used in many different physical simulation types. Above these

| User written code . » " .
per experiment code additions and modifications
(- iogeochemistry | |Ocean /Atmosphere lce ICoupling |State Estimation and
Specialized nd Tracers lautomatic differentiatior
packages. IC KPP AIM_V23 THSICE |AIM_COMPON_INTERF |ADMTLM
lGCHEM EXF FIZHI ISEAICE |AIM_OCN_COUPLER |AUTODIFF
cFc CHEAPAML | [LAND ISHELFICE ICOMPON_COMMUNIC cosT
JOFFLINE IBULK_FORCE ICEFRONT IOCN_COMPON_INTERF ICTRL
IMATRIX IEBM ISTREAMICE [ECCO
IMY82 IGRDCHK
IGGL90 IOPENAD
IOPPS ISBO (Earth Rotation)
IPP81 ISPHERE

General purpose
numerical
infrastructure
packages.

General purpose
computational
infrastructure
packages.

(| .
Foundation
code model/src/* model/inc/* eesupp/src/* eesupp/inc/*

—

layers are more specialized packages.

156

Chapter 8. Packages | - Physical Parameterizations

MITgcm Documentation, Release 1.0

“compiled in” or implemented within the program. Packages excluded at compile time are completely absent from the
executable program(s) and thus cannot be later activated by any set of subsequent run—time options.

8.1.1.1 Package Inclusion/Exclusion

There are numerous ways that one can specify compile-time package inclusion or exclusion and they are all imple-
mented by the genmake?2 program which was previously described in Section [sec:buildingCode]. The options are
as follows:

1. Setting the genamake?2 options —enable PKG and/or ~disable PKG specifies inclusion or exclusion.
This method is intended as a convenient way to perform a single (perhaps for a quick test) compilation.

2. By creating a text file with the name packages. conf in either the local build directory or the -mods=DIR
directory, one can specify a list of packages (one package per line, with *#’ as the comment character) to be
included. Since the packages.conf file can be saved, this is the preferred method for setting and recording
(for future reference) the package configuration.

3. For convenience, a list of “standard” package groups is contained in the pkg/pkg_groups file. By selecting
one of the package group names in the packages.conf file, one automatically obtains all packages in that

group.

4. By default (that is, if a packages.conf file is not found), the genmake2 program will use the package
group default “default_pkg_list” asdefined in pkg/pkg_groups file.

5. To help prevent users from creating unusable package groups, the genmake?2 program will parse the contents
of the pkg/pkg_depend file to determine:

* whether any two requested packages cannot be simultaneously included (eg. seaice and thsice are mutually
exclusive),

» whether additional packages must be included in order to satisfy package dependencies (eg. rw depends
upon functionality within the mdsio package), and

* whether the set of all requested packages is compatible with the dependencies (and producing an error if
they aren’t).

Thus, as a result of the dependencies, additional packages may be added to those originally requested.
8.1.1.2 Package Activation

For run—time package control, MITgcm uses flags set through a data . pkg file. While some packages (eg. debug,
mnc, exch2) may have their own usage conventions, most follow a simple flag naming convention of the form:

usePackageName=.TRUE.

where the usePackageName variable can activate or disable the package at runtime. As mentioned previously,
packages must be included in order to be activated. Generally, such mistakes will be detected and reported as errors
by the code. However, users should still be aware of the dependency.

8.1.1.3 Package Coding Standards

The following sections describe how to modify and/or create new MITgcm packages.

8.1. Overview 157

MITgcm Documentation, Release 1.0

Packages are Not Libraries

To a beginner, the MITgem packages may resemble libraries as used in myriad software projects. While future
versions are likely to implement packages as libraries (perhaps using FORTRANO90/95 syntax) the current packages
(FORTRANT77) are not based upon any concept of libraries.

File Inclusion Rules

Instead, packages should be viewed only as directories containing “sets of source files” that are built using some
simple mechanisms provided by genmake?2. Conceptually, the build process adds files as they are found and proceeds
according to the following rules:

1. genmake?2 locates a “core” or main set of source files (the —~standarddirs option sets these locations and
the default value contains the directories eesupp and model).

2. genmake? then finds additional source files by inspecting the contents of each of the package directories:
(a) As the new files are found, they are added to a list of source files.

(b) If there is a file name “collision” (that is, if one of the files in a package has the same name as one of the
files previously encountered) then the file within the newer (more recently visited) package will superseed
(or “hide”) any previous file(s) with the same name.

(c) Packages are visited (and thus files discovered) in the order that the packages are enabled within
genmake2. Thus, the files in PackB may superseed the files in PackAa if PackA is enabled before
PackB. Thus, package ordering can be significant! For this reason, genmake2 honors the order in which
packages are specified.

These rules were adopted since they provide a relatively simple means for rapidly including (or “hiding”) existing files
with modified versions.

Conditional Compilation and PACKAGES_CONFIG.h

Given that packages are simply groups of files that may be added or removed to form a whole, one may wonder
how linking (that is, FORTRAN symbol resolution) is handled. This is the second way that genmake?2 supports
the concept of packages. Basically, genmake?2 creates a Makefile that, in turn, is able to create a file called
PACKAGES_CONFIG. h that contains a set of C pre-processor (or “CPP”) directives such as:

#undef ALLOW_KPP
#undef ALLOW_LAND

#define ALLOW_GENERIC_ADVDIFF
#define ALLOW_MDSIO

These CPP symbols are then used throughout the code to conditionally isolate variable definitions, function calls, or
any other code that depends upon the presence or absence of any particular package.

An example illustrating the use of these defines is:

#ifdef ALLOW GMREDI
IF (useGMRedi) CALL GMREDI_CALC_DIFF (

I bi,bj,iMin, iMax, jMin, jMax, K,
I maskUp,
O KappaRT, KappaRs,

(continues on next page)

158 Chapter 8. Packages | - Physical Parameterizations

MITgcm Documentation, Release 1.0

(continued from previous page)

I myThid)
#endif

which is included from the file and shows how both the compile-time ALLOW_GMREDI flag and the run—time
useGMRed1 are nested.

There are some benefits to using the technique described here. The first is that code snippets or subroutines associated
with packages can be placed or called from almost anywhere else within the code. The second benefit is related to
memory footprint and performance. Since unused code can be removed, there is no performance penalty due to unnec-
essary memory allocation, unused function calls, or extra run-time IF (.. .) conditions. The major problems with
this approach are the potentially difficult-to-read and difficult-to-debug code caused by an overuse of CPP statements.
So while it can be done, developers should exerecise some discipline and avoid unnecesarily “smearing” their package
implementation details across numerous files.

Package Startup or Boot Sequence

Calls to package routines within the core code timestepping loop can vary. However, all packages should follow a
required “boot” sequence outlined here:

1. S/R PACKAGES_BOOT ()

CALL OPEN_COPY_DATA_FILE('data.pkg', 'PACKAGES_BOOT', ...)

2. S/R PACKAGES_READPARMS ()

#ifdef ALLOW_S${PKG}
if (use${Pkg})
& CALL ${PKG}_READPARMS (retCode)
#endif

3. S/R PACKAGES_INIT_FIXED ()
#ifdef ALLOW_S{PKG}
if (use${Pkg})
& CALL ${PKG}_INIT FIXED(retCode)
#endif

4. S/R PACKAGES_CHECK ()

#ifdef ALLOW_S{PKG}
if (use${Pkg})

& CALL ${PKG}_CHECK(retCode)
#else
if (use${Pkg})
& CALL PACKAGES_CHECK_ERROR('S{PKG}")
#endif

5. S/R PACKAGES_INIT_VARIABLES ()

#ifdef ALLOW_S{PKG}
if (use${Pkg})
& CALL ${PKG} INIT VARIA()
#endif

(continues on next page)

8.1. Overview 159

MITgcm Documentation, Release 1.0

(continued from previous page)

6. S/R DO_THE_MODEL_IO

#ifdef ALLOW_S{PKG}
if (use${Pkg})
& CALL ${PKG}_OUTPUT()
#endif

7. S/R PACKAGES_WRITE_PICKUP ()

#ifdef ALLOW_S{PKG}
if (use${Pkg})
& CALL ${PKG}_WRITE_PICKUP()
#endif

Adding a package to PARAMS.h and packages_boot()

An MITgcm package directory contains all the code needed for that package apart from one variable for each package.
This variable is the use${Pkg} * flag. This flag, which is of type logical, **must* be declared in the shared header file
PARAMS.h in the PARM_PACKAGES block. This convention is used to support a single runtime control file data.pkg
which is read by the startup routine packages_boot() and that sets a flag controlling the runtime use of a package. This
routine needs to be able to read the flags for packages that were not built at compile time. Therefore when adding a new
package, in addition to creating the per-package directory in the pkg/ subdirectory a developer should add a use${Pkg}
* flag to *PARAMS.h and a use${Pkg} * entry to the *packages_boot() PACKAGES namelist. The only other package
specific code that should appear outside the individual package directory are calls to the specific package API.

8.2 Packages Related to Hydrodynamical Kernel

8.2.1 Generic Advection/Diffusion

The generic_advdiff package contains high-level subroutines to solve the advection-diffusion equation of any tracer,
either active (potential temperature, salinity or water vapor) or passive (see pkg/ptracers). (see also sections
[sec:tracer:sub:equations] to [sec:tracer:sub:advectiongchemes]).

8.2.1.1 Introduction

Package “generic_advdiff” provides a common set of routines for calculating advective/diffusive fluxes for tracers
(cell centered quantities on a C-grid).

Many different advection schemes are available: the standard centered second order, centered fourth order and upwind
biased third order schemes are known as linear methods and require some stable time-stepping method such as Adams-
Bashforth. Alternatives such as flux-limited schemes are stable in the forward sense and are best combined with the
multi-dimensional method provided in gad_advection.

8.2.1.2 Key subroutines, parameters and files

There are two high-level routines:

¢ GAD_CALC_RHS calculates all fluxes at time level “n” and is used for the standard linear schemes. This must
be used in conjuction with Adams—Bashforth time stepping. Diffusive and parameterized fluxes are always
calculated here.

160 Chapter 8. Packages | - Physical Parameterizations

MITgcm Documentation, Release 1.0

* GAD_ADVECTION calculates just the advective fluxes using the non-linear schemes and can not be used in

conjuction with Adams—Bashforth time stepping.

8.2.1.3 GAD Diagnostics

——>|<- Tile

(max=80c)

ADVr_TH | 15 |WM LR |degC.
—Temperature

ADVx_TH | 15 |UU 087MR |degC.
—Temperature

ADVy_TH | 15 |VV 086MR | degC
—Temperature

DFrE_TH | 15 |WM LR | degC
—Temperature (Explicit part)
DIFx_TH | 15 |UU 090MR | degC
—Temperature

DIFy_TH | 15 |[VV 089MR | degC
—Temperature

DFrI_TH | 15 |[WM LR | degC
—Temperature (Implicit part)
ADVr_SLT| 15 |WM LR [psu.
ADVx_SLT| 15 |UU 094MR [psu.
ADVy_SLT| 15 |VV 093MR [psu.
DFrE_SLT| 15 [WM LR [psu.
— (Explicit part)

DIFx_SLT| 15 |UU 097MR [psu.
DIFy_SLT| 15 [VV 096MR [psu.
DFrI_SLT| 15 [WM LR [psu.

— (Implicit part)

.m"~3/s
.m"3/s
.m"3/s
.m"3/s
.m"3/s
m"~3/s
m~3/s
m*3/s
m"~3/s
m"~3/s

m"~3/s
m~3/s

|Vertical Advective Flux of Pot.

Advective Flux of Pot.

|[Meridional Advective Flux of Pot.

|[Vertical Diffusive Flux of Pot.

Diffusive Flux of Pot.

|[Meridional Diffusive Flux of Pot.
|[Vertical Diffusive Flux of Pot.

|Vertical Advective Flux of Salinity

Advective Flux of Salinity

[Meridional Advective Flux of Salinity
|[Vertical Diffusive Flux of Salinity

[

Diffusive Flux of Salinity

|[Meridional Diffusive Flux of Salinity
|[Vertical Diffusive Flux of Salinity

8.2.1.4 Experiments and tutorials that use GAD

» Offline tutorial, in tutorial_offline verification directory, described in section [sec:eg-offline]

* Baroclinic gyre experiment, in tutorial_baroclinic_gyre verification directory, described in section [sec:eg-

fourlayer]

 Tracer Sensitivity tutorial, in tutorial_tracer_adjsens verification directory, described in section [sec:eg-simple-

tracer-adjoint]

8.2.2 Shapiro Filter

(in directory: pkg/shap_filt/)

8.2.2.1 Key subroutines, parameters and files

Implementation of filter is described in section [sec:shapiro-filter].

8.2.2.2 Experiments and tutorials that use shap filter

» Held Suarez tutorial, in tutorial_held_suarez_cs verification directory, described in section [sec:eg-hs]

8.2. Packages Related to Hydrodynamical Kernel

161

MITgcm Documentation, Release 1.0

* other Held Suarez verification experiments (hs94.128x64x5, hs94.1x64x5, hs94.cs-32x32x5)
* AIM verification experiments (aim.51_cs, aim.51_Equatorial_Channel, aim.51_LatLon)

* fizhi verification experiments (fizhi-cs-32x32x40, fizhi-cs-aqualev20, fizhi-gridalt-hs)

8.2.3 FFT Filtering Code

(in directory: pkg/zonal_filt/)

8.2.3.1 Key subroutines, parameters and files
8.2.3.2 Experiments and tutorials that use zonal filter

* Held Suarez verification experiment (hs94.128x64x5)

e AIM verification experiment (aim.51_LatLon)

8.2.4 exch2: Extended Cubed Sphere Topology
8.2.4.1 Introduction

The exch2 package extends the original cubed sphere topology configuration to allow more flexible domain decom-
position and parallelization. Cube faces (also called subdomains) may be divided into any number of tiles that divide
evenly into the grid point dimensions of the subdomain. Furthermore, the tiles can run on separate processors indi-
vidually or in groups, which provides for manual compile-time load balancing across a relatively arbitrary number of
processors.

The exchange parameters are declared in \pkgexch2/W2_EXCH2_TOPOLOGY.h and assigned in pkg/
exch2/w2_e2setup.F. The validity of the cube topology depends on the SIZE.h file as detailed below. The
default files provided in the release configure a cubed sphere topology of six tiles, one per subdomain, each with 32
x 32 grid points, with all tiles running on a single processor. Both files are generated by Matlab scripts in utils/
exch2/matlab-topology—generator; see Section ref{sec:topogen} for details on creating alternate topolo-
gies. Pregenerated examples of these files with alternate topologies are provided under utils/exch2/code-mods
along with the appropriate SIZE . h file for single-processor execution.

8.2.4.2 Invoking exch2

To use exch2 with the cubed sphere, the following conditions must be met:

* The exch2 package is included when genmake?2 is run. The easiest way to do this is to add the line code{exch2}
to the packages. conf file — see Section ref{sec:buildingCode} sectiontitle{Building the code} for general
details.

* An example of W2_EXCH2_TOPOLOGY.h and w2_e2setup.F must reside in a directory containing
files symbolically linked by the genmake2 script. The safest place to put these is the directory indicated in the
-mods=DIR command line modifier (typically . . /code), or the build directory. The default versions of these
files reside in pkg/exch?2 and are linked automatically if no other versions exist elsewhere in the build path,
but they should be left untouched to avoid breaking configurations other than the one you intend to modify.

* Files containing grid parameters, named ti1e00n.mitgrid where n=(1:6) (one per subdomain), must
be in the working directory when the MITgcm executable is run. These files are provided in the example
experiments for cubed sphere configurations with 32 x 32 cube sides — please contact MITgcm support if you
want to generate files for other configurations.

162 Chapter 8. Packages | - Physical Parameterizations

MITgcm Documentation, Release 1.0

e As always when compiling MITgcm, the file STZE . h must be placed where genmake?2 will find it. In par-
ticular for exch2, the domain decomposition specified in SIZE . h must correspond with the particular config-
uration’s topology specified in W2_EXCH2_TOPOLOGY .h and w2_e2setup.F. Domain decomposition
issues particular to exch2 are addressed in Section ref{sec:topogen} sectiontitle{Generating Topology Files
for exch2} and ref{sec:exch2mpi} sectiontitle{exch2, SIZE.h, and Multiprocessing}; a more general back-
ground on the subject relevant to MITgcem is presented in Section ref{sec:specifying_a_decomposition} sec-
tiontitle{ Specifying a decomposition}.

At the time of this writing the following examples use exch2 and may be used for guidance:
e verification/adjust_nlfs.cs-32x32x1
e verification/adjustment.cs-32x32x1
e verification/aim.51_cs
e verification/global_ocean.cs32x15

e verification/hs94.cs-32x32x5

8.2.4.3 Generating Topology Files for exch2

Alternate cubed sphere topologies may be created using the Matlab scripts
in utils/exch2/matlab-topology—generator. Running the m-file
utils—-exch2-matlab-topology—-generator_driver.m from the Matlab prompt (there are no pa-
rameters to pass) generates exch2 topology files W2_EXCH2_TOPOLOGY.h and w2_e2setup.F in the
working directory and displays a figure of the topology via Matlab — figures ref{fig:6tile}, ref{fig:18tile}, and
ref{fig:48tile} are examples of the generated diagrams. The other m-files in the directory are subroutines called from
driver.m and should not be run “’bare” except for development purposes.

The parameters that determine the dimensions and topology of the generated configuration are nr, nb, ng, tnx and
tny, and all are assigned early in the script.

The first three determine the height and width of the subdomains and hence the size of the overall domain. Each
one determines the number of grid points, and therefore the resolution, along the subdomain sides in a *’great circle”
around each the three spatial axes of the cube. At the time of this writing MITgcm requires these three parameters to
be equal, but they provide for future releases to accomodate different resolutions around the axes to allow subdomains
with differing resolutions.

The parameters t nx and tny determine the width and height of the tiles into which the subdomains are decomposed,
and must evenly divide the integer assigned to nr, nb and ng. The result is a rectangular tiling of the subdomain.
Figure 8.2 shows one possible topology for a twenty-four-tile cube, and Figure 8.4 shows one for six tiles.

Tiles can be selected from the topology to be omitted from being allocated memory and processors. This tuning
is useful in ocean modeling for omitting tiles that fall entirely on land. The tiles omitted are specified in the file
blanklist.txt by their tile number in the topology, separated by a newline.

8.2.4.4 exch2, SIZE.h, and Multiprocessing

Once the topology configuration files are created, each Fortran PARAMETER in SIZE . h must be configured to match.
Section ref{sec:specifying_a_decomposition} sectiontitle{ Specifying a decomposition} provides a general description
of domain decomposition within MITgcm and its relation to file{SIZE.h}. The current section specifies constraints
that the exch2 package imposes and describes how to enable parallel execution with MPL.

As in the general case, the parameters varlink{sNx}{sNx} and varlink{sNy}{sNy} define the size of the individual
tiles, and so must be assigned the same respective values as code{tnx} and code{tny} in file{driver.m}.

8.2. Packages Related to Hydrodynamical Kernel 163

MITgcm Documentation, Release 1.0

r——
B, w7 ! weR
7777777 rffffffa
B tas | 6™
Be 13 I ta®
15 | f2]
AR
1 1 |
100 120 140

Figure 8.2: Plot of a cubed sphere topology with a 32 x 192 domain divided into six 32 x 32 subdomains, each of
which is divided into eight tiles of width t nx=16 and height t ny=8 for a total of forty-eight tiles. The colored borders
of the subdomains represent the parameters nr (red), ng (green), and nb (blue). This tiling is used in the example
verification/adjustment.cs-32x32x 1/ with the option (blanklist.txt) to remove the land-only 4 tiles (11,12,13,14) which
are filled in red on the plot.

600
f1w ‘\ f1w ‘\ f1w ’ f1w f1S
|]
500 B, t14 :‘ t15 :‘fs 16 : 117 8§ 5. fGt18™
4 ‘\ f4n ‘\ f4n ' f4" f4e
5 f5S ‘\ f5S ‘\ fSS ’ f5S
| |
400 f, f3t9 4B t10 :‘ t11 :‘f4 t12 ’ t13
f2, f2, { f2, { f2, | f2,
3 fSS

5 t4 f2 f1e 18 f4
300 -

5 t3 f2 f1e t7 f4
200 |

~—ft——— 42—

5 t2 f2 § 1 6 f4
o0 Lo

f5n t f2r f1 15 4

6 f6e
o L 1 1 1 1 1 J
0 100 200 300 400 500 600 700

Figure 8.3: Plot of a non-square cubed sphere topology with 6 subdomains of different size (nr=90,ng=360,nb=90),
divided into one to four tiles each (tnx=90, tny=90), resulting in a total of 18 tiles.

164 Chapter 8. Packages | - Physical Parameterizations

MITgcm Documentation, Release 1.0

100

90 w s

80 f3, f5 t5 f6, || . f6 6 f2,

60~ f5 f5
w s

50+ fl, 3 fa, || 3, fa w© 6,

40+

30

20
B, 1 t 2, II 1, 2 12 4

0 20 40 60 80 100 120 140

Figure 8.4: Plot of a cubed sphere topology with a 32 x 192 domain divided into six 32 x 32 subdomains with one
tile each (tnx=32, tny=32). This is the default configuration.

The halo width parameters varlink{OLx } {OLx} and varlink{OLy}{OLy} have no special bearing on exch2 and may
be assigned as in the general case. The same holds for varlink{Nr}{Nr}, the number of vertical levels in the model.

The parameters varlink{nSx}{nSx}, varlink{nSy}{nSy}, varlink{nPx}{nPx}, and varlink{nPy}{nPy} relate to the
number of tiles and how they are distributed on processors. When using exch2, the tiles are stored in the x dimension,
and so code{varlink{nSy}{nSy}=1} in all cases. Since the tiles as configured by exch2 cannot be split up accross
processors without regenerating the topology, code{varlink{nPy } {nPy}=1} as well.

The number of tiles MITgcm allocates and how they are distributed between processors depends on var-
link{nPx}{nPx} and varlink{nSx}{nSx}. varlink{nSx}{nSx} is the number of tiles per processor and var-
link{nPx}{nPx} is the number of processors. The total number of tiles in the topology minus those listed in
file{blanklist.txt} must equal code{nSx*nPx}. Note that in order to obtain maximum usage from a given number
of processors in some cases, this restriction might entail sharing a processor with a tile that would otherwise be ex-
cluded because it is topographically outside of the domain and therefore in file{blanklist.txt}. For example, suppose
you have five processors and a domain decomposition of thirty-six tiles that allows you to exclude seven tiles. To
evenly distribute the remaining twenty-nine tiles among five processors, you would have to run one “’dummy” tile to
make an even six tiles per processor. Such dummy tiles are emph{not} listed in file{blanklist.txt}.

The following is an example of file{ SIZE.h} for the six-tile configuration illustrated in figure ref{fig:6tile} running on
one processor:

PARAMETER (

& sNx = 32,
& sNy = 32,
& OLx = 2,
& OLy = 2,
& nsSx = 6,
& nsSy = 1,
& nPx = 1,

(continues on next page)

8.2. Packages Related to Hydrodynamical Kernel 165

MITgcm Documentation, Release 1.0

(continued from previous page)

& nPy = 1,
& Nx = sNxx*nSx*nPx,
& Ny = sNyxnSy=*nPy,
& Nr = 5)

The following is an example for the forty-eight-tile topology in figure ref{fig:48tile} running on six processors:

PARAMETER (

& sNx = 16,

& sNy = 8,

& OLx = 2,

& OLy = 2,

& nsSx = 8,

& nsSy = 1,

& nbPx = 6,

& nPy = 1,

& Nx = sNxx*nSx*nPx,
& Ny = sNyxnSy*nPy,
& Nr = 5)

8.2.4.5 Key Variables

The descriptions of the variables are divided up into scalars, one-dimensional arrays indexed to the tile number, and
two and three-dimensional arrays indexed to tile number and neighboring tile. This division reflects the functionality
of these variables: The scalars are common to every part of the topology, the tile-indexed arrays to individual tiles,
and the arrays indexed by tile and neighbor to relationships between tiles and their neighbors.

Scalars:

The number of tiles in a particular topology is set with the parameter code{NTILES}, and the maximum number of
neighbors of any tiles by code{ MAX_NEIGHBOURS}. These parameters are used for defining the size of the various
one and two dimensional arrays that store tile parameters indexed to the tile number and are assigned in the files
generated by file{driver.m}.

The scalar parameters varlink{exch2_domain_nxt}{exch2_domain_nxt} and var-
link{exch2_domain_nyt} {exch2_domain_nyt} express the number of tiles in the x and y global in-
dices. For example, the default setup of six tiles (Fig. ref{fig:6tile}) has code{exch2_domain_nxt=6} and
code{exch2_domain_nyt=1}. A topology of forty-eight tiles, eight per subdomain (as in figure ref{fig:48tile}), will
have code{exch2_domain_nxt=12} and code{exch2_domain_nyt=4}. Note that these parameters express the tile
layout in order to allow global data files that are tile-layout-neutral. They have no bearing on the internal storage of
the arrays. The tiles are stored internally in a range from code{varlink{bi}{bi}=(1:NTILES)} in the x axis, and the
y axis variable varlink{bj}{bj} is assumed to equal code{1} throughout the package.

Arrays indexed to tile number:

The following arrays are of length code{NTILES} and are indexed to the tile number, which is indicated in the
diagrams with the notation textsf{t}n. The indices are omitted in the descriptions.

The arrays varlink{exch2_tnx } {exch2_tnx} and varlink{exch2_tny}{exch2_tny} express the x and y dimensions
of each tile. At present for each tile texttt{exch2_tnx=sNx} and texttt{exch2_tny=sNy}, as assigned in file{ SIZE.h}
and described in Section ref{sec:exch2mpi} sectiontitle{exch2, SIZE.h, and Multiprocessing}. Future releases of
MITgcm may allow varying tile sizes.

The arrays varlink{exch2_tbasex}{exch2_tbasex} and varlink{exch2_tbasey}{exch2_tbasey} determine the tiles’
Cartesian origin within a subdomain and locate the edges of different tiles relative to each other. As an example,
in the default six-tile topology (Fig. ref{fig:6tile}) each index in these arrays is set to code{0} since a tile occupies its
entire subdomain. The twenty-four-tile case discussed above will have values of code{0} or code{16}, depending on

166 Chapter 8. Packages | - Physical Parameterizations

MITgcm Documentation, Release 1.0

the quadrant of the tile within the subdomain. The elements of the arrays varlink{exch2_txglobalo}{exch2_txglobalo}
and varlink{exch2_txglobalo}{exch2_txglobalo} are similar to varlink{exch2_tbasex}{exch2_tbasex} and var-
link{exch2_tbasey}{exch2_tbasey}, but locate the tile edges within the global address space, similar to that used
by global output and input files.

The array varlink{exch2_myFace}{exch2_myFace} contains the number of the subdomain of each tile, in a range
code{(1:6)} in the case of the standard cube topology and indicated by textbf{textsf{f}}n in figures ref{fig:6tile}
and ref{fig:48tile}. varlink{exch2_nNeighbours}{exch2_nNeighbours} contains a count of the neighboring tiles each
tile has, and sets the bounds for looping over neighboring tiles. varlink{exch2_tProc}{exch2_tProc} holds the process
rank of each tile, and is used in interprocess communication.

The arrays varlink{exch2_isWedge}{exch2_isWedge}, varlink{exch2_isEedge}{exch2_isEedge}, var-
link{exch2_isSedge}{exch2_isSedge}, and varlink{exch2_isNedge}{exch2_isNedge} are set to code{l} if the
indexed tile lies on the edge of its subdomain, code{0} if not. The values are used within the topology generator to
determine the orientation of neighboring tiles, and to indicate whether a tile lies on the corner of a subdomain. The
latter case requires special exchange and numerical handling for the singularities at the eight corners of the cube.

Arrays Indexed to Tile Number and Neighbor:

The following arrays have vectors of length code{MAX_NEIGHBOURS} and code{NTILES} and describe the ori-
entations between the the tiles.

The array code{exch2_neighbourld(a,T)} holds the tile number code{Tn} for each of the tile number code{T}’s
neighboring tiles code{a}. The neighbor tiles are indexed code{(1:exch2_nNeighbours(T))} in the order right to left
on the north then south edges, and then top to bottom on the east then west edges.

The code{exch2_opposingSend_record(a,T)} array holds the index code{b} of the element in
texttt{exch2_neighbourld(b,Tn)} that holds the tile number code{T}, given code{Tn=exch2_neighborld(a,T)}.
In other words,

exch2_neighbourId(exch2_opposingSend_record(a,T),
exch2_neighbourId(a,T)) =T

This provides a back-reference from the neighbor tiles.

The arrays varlink {exch2_pi}{exch2_pi} and varlink{exch2_pj} {exch2_pj} specify the transformations of indices in
exchanges between the neighboring tiles. These transformations are necessary in exchanges between subdomains
because a horizontal dimension in one subdomain may map to other horizonal dimension in an adjacent subdomain,
and may also have its indexing reversed. This swapping arises from the “’folding” of two-dimensional arrays into a
three-dimensional cube.

The dimensions of code{exch2_pi(t,N,T)} and code{exch2_pj(t,N,T)} are the neighbor ID code{N} and the tile num-
ber code{T} as explained above, plus a vector of length code{2} containing transformation factors code{t}. The first
element of the transformation vector holds the factor to multiply the index in the same dimension, and the second
element holds the the same for the orthogonal dimension. To clarify, code{exch2_pi(1,N,T)} holds the mapping of the
x axis index of tile code{T} to the x axis of tile code{T}’s neighbor code{N}, and code{exch2_pi(2,N,T)} holds
the mapping of code{T}’s x index to the neighbor code{N}’s y index.

One of the two elements of code{exch2_pi} or code{exch2_pj} for a given tile code{T} and neighbor code{N} will
be code{0}, reflecting the fact that the two axes are orthogonal. The other element will be code{1} or code{-1},
depending on whether the axes are indexed in the same or opposite directions. For example, the transform vector of
the arrays for all tile neighbors on the same subdomain will be code{(1,0)}, since all tiles on the same subdomain are
oriented identically. An axis that corresponds to the orthogonal dimension with the same index direction in a particular
tile-neighbor orientation will have code{(0,1)}. Those with the opposite index direction will have code{(0,-1)} in order
to reverse the ordering.

The arrays varlink{exch2_oi}{exch2_oi}, varlink{exch2_oj}{exch2_oj}, varlink{exch2_oi_f}{exch2_oi_f}, and var-
link{exch2_oj_f}{exch2_oj_f} are indexed to tile number and neighbor and specify the relative offset within the

8.2. Packages Related to Hydrodynamical Kernel 167

MITgcm Documentation, Release 1.0

subdomain of the array index of a variable going from a neighboring tile code{N} to a local tile code{T}. Consider
code{T=1} in the six-tile topology (Fig. ref{fig:6tile}), where

exch2_oi(1,1)=33

exch2_o0i(2,1)=0

exch2_o01(3,1)=32
(4,1)

exch2_oi

The simplest case is code{exch2_oi(2,1)}, the southern neighbor, which is code{Tn=6}. The axes of code{T} and
code{Tn} have the same orientation and their x axes have the same origin, and so an exchange between the two
requires no changes to the x index. For the western neighbor (code{Tn=5}), code{code_0i(3,1)=32} since the
code{x=0} vector on code{T} corresponds to the code{y=32} vector on code{Tn}. The eastern edge of code{T}
shows the reverse case (code{exch2_oi(4,1)=-32)}), where code{x=32} on code{T} exchanges with code{x=0} on
code{Tn=2}.

The most interesting case, where code{exch2_oi(1,1)=33} and code{Tn=3}, involves a reversal of indices. As in every
case, the offset code{exch2_oi} is added to the original x index of code{T} multiplied by the transformation factor
code{exch2_pi(t,N,T)}. Here code{exch2_pi(1,1,1)=0} since the x axis of code{T} is orthogonal to the x axis of
code{Tn}. code{exch2_pi(2,1,1)=-1} since the x axis of code{T} corresponds to the y axis of code{Tn}, but the
index is reversed. The result is that the index of the northern edge of code{ T}, which runs code{(1:32)}, is transformed
to code{(-1:-32)}. code{exch2_oi(1,1)} is then added to this range to get back code{(32:1)} — the index of the y
axis of code{Tn} relative to code{T}. This transformation may seem overly convoluted for the six-tile case, but it is
necessary to provide a general solution for various topologies.

Finally, varlink{exch2_itlo_c}{exch2_itlo_c}, varlink{exch2_ithi_c}{exch2_ithi_c}, var-
link{exch2_jtlo_c}{exch2_jtlo_c} and varlink{exch2_jthi_c}{exch2_jthi_c} hold the location and index bounds of
the edge segment of the neighbor tile code{N}’s subdomain that gets exchanged with the local tile code{T}. To take
the example of tile code{T=2} in the forty-eight-tile topology (Fig. ref{fig:48tile}):

exch2_itlo_c(4,2)=17
exch2_ithi_c(4,2)=17
exch2_7jtlo_c(4,2)=0

exch2_jthi_c(4,2)=33

Here code{N=4}, indicating the western neighbor, which is code{Tn=1}. code{Tn} resides on the same subdomain
as code{T}, so the tiles have the same orientation and the same x and y axes. The x axis is orthogonal to
the western edge and the tile is 16 points wide, so code{exch2_itlo_c} and code{exch2_ithi_c} indicate the column
beyond code{Tn}’s eastern edge, in that tile’s halo region. Since the border of the tiles extends through the entire height
of the subdomain, the y axis bounds code{exch2_jtlo_c} to code{exch2_jthi_c} cover the height of code{(1:32)},
plus 1 in either direction to cover part of the halo.

For the north edge of the same tile code{T=2} where code{N=1} and the neighbor tile is code{Tn=5}:

exch2_itlo_c
exch2_ithi_c
exch2_jtlo_c
exch2_jthi_c

code{T}’s northern edge is parallel to the x axis, but since code{Tn}’s y axis corresponds to code{T}’s x
axis, code{T}’s northern edge exchanges with code{Tn}’s western edge. The western edge of the tiles corresponds
to the lower bound of the x axis, so code{exch2_itlo_c} and code{exch2_ithi_c} are code{0}, in the western halo
region of code{Tn}. The range of code{exch2_jtlo_c} and code{exch2_jthi_c} correspond to the width of code{T}’s
northern edge, expanded by one into the halo.

168 Chapter 8. Packages | - Physical Parameterizations

MITgcm Documentation, Release 1.0

8.2.4.6 Key Routines

Most of the subroutines particular to exch2 handle the exchanges themselves and are of the same format as those
described in ref{sec:cube_sphere_communication} sectiontitle{ Cube sphere communication}. Like the original rou-
tines, they are written as templates which the local Makefile converts from code{RX} into code{RL} and code{RS}
forms.

The interfaces with the core model subroutines are code{EXCH_UV_XY_RX}, code{EXCH_UV_XYZ_RX}
and code{EXCH_XY_RX}. They override the standard exchange routines when code{genmake2} is run
with code{exch2} option. They in turn call the local exch2 subroutines code{EXCH2_UV_XY_RX]} and
code{EXCH2_UV_XYZ_RX]} for two and three-dimensional vector quantities, and code{EXCH2_XY_RX} and
code{EXCH2_XYZ_RX]} for two and three-dimensional scalar quantities. These subroutines set the dimensions of
the area to be exchanged, call code{EXCH2_RX1_CUBE} for scalars and code{ EXCH2_RX2_CUBE} for vectors,
and then handle the singularities at the cube corners.

The separate scalar and vector forms of code{EXCH2_RX1_CUBE} and code{ EXCH2_RX2_CUBE} reflect that the
vector-handling subroutine needs to pass both the u and v components of the physical vectors. This swapping
arises from the topological folding discussed above, where the x and y axes get swapped in some cases, and is not
an issue with the scalar case. These subroutines call code{ EXCH2_SEND_RX1} and code{EXCH2_SEND_RX2},
which do most of the work using the variables discussed above.

8.2.4.7 Experiments and tutorials that use exch2

* Held Suarez tutorial, in tutorial_held_suarez_cs verification directory, described in section ref{sec:eg-hs}

8.2.5 Gridalt - Alternate Grid Package
8.2.5.1 Introduction

The gridalt package [Mol09] is designed to allow different components of MITgcm to be run using horizontal and/or
vertical grids which are different from the main model grid. The gridalt routines handle the definition of the all
the various alternative grid(s) and the mappings between them and the MITgem grid. The implementation of the
gridalt package which allows the high end atmospheric physics (fizhi) to be run on a high resolution and quasi terrain-
following vertical grid is documented here. The package has also (with some user modifications) been used for other
calculations within the GCM.

The rationale for implementing the atmospheric physics on a high resolution vertical grid involves the fact that the
MITgem p* (or any pressure-type) coordinate cannot maintain the vertical resolution near the surface as the bottom
topography rises above sea level. The vertical length scales near the ground are small and can vary on small time scales,
and the vertical grid must be adequate to resolve them. Many studies with both regional and global atmospheric models
have demonstrated the improvements in the simulations when the vertical resolution near the surface is increased ().
Some of the benefit of increased resolution near the surface is realized by employing the higher resolution for the
computation of the forcing due to turbulent and convective processes in the atmosphere.

The parameterizations of atmospheric subgrid scale processes are all essentially one-dimensional in nature, and the
computation of the terms in the equations of motion due to these processes can be performed for the air column over
one grid point at a time. The vertical grid on which these computations take place can therefore be entirely independant
of the grid on which the equations of motion are integrated, and the "tendency’ terms can be interpolated to the vertical
grid on which the equations of motion are integrated. A modified p* coordinate, which adjusts to the local terrain
and adds additional levels between the lower levels of the existing p* grid (and perhaps between the levels near the
tropopause as well), is implemented. The vertical discretization is different for each grid point, although it consist of
the same number of levels. Additional ’sponge’ levels aloft are added when needed. The levels of the physics grid are
constrained to fit exactly into the existing p* grid, simplifying the mapping between the two vertical coordinates. This
is illustrated as follows:

8.2. Packages Related to Hydrodynamical Kernel 169

MITgcm Documentation, Release 1.0

Modified P* Discretization for High End Physics

Dark solid lines represent existing P* levels, light solid lines are the addition levels
added at each grid cell.

Figure 8.5: Vertical discretization for MITgem (dark grey lines) and for the atmospheric physics (light grey lines). In
this implementation, all MITgcm level interfaces must coincide with atmospheric physics level interfaces.

The algorithm presented here retains the state variables on the high resolution ’physics’ grid as well as on the coarser
resolution ’dynamics‘ grid, and ensures that the two estimates of the state ’agree’ on the coarse resolution grid. It
would have been possible to implement a technique in which the tendencies due to atmospheric physics are computed
on the high resolution grid and the state variables are retained at low resolution only. This, however, for the case of the
turbulence parameterization, would mean that the turbulent kinetic energy source terms, and all the turbulence terms
that are written in terms of gradients of the mean flow, cannot really be computed making use of the fine structure in
the vertical.

8.2.5.2 Equations on Both Grids

In addition to computing the physical forcing terms of the momentum, thermodynamic and humidity equations on the
modified (higher resolution) grid, the higher resolution structure of the atmosphere (the boundary layer) is retained
between physics calculations. This neccessitates a second set of evolution equations for the atmospheric state variables

on the modified grid. If the equation for the evolution of U on p* can be expressed as:
dynamics oU physics

ot

ov
ot

total B a£
ot

P* p* p*
where the physics forcing terms on p* have been mapped from the modified grid, then an additional equation to govern
the evolution of U (for example) on the modified grid is written:

dynamics oU physics

i

U
ot

total B 8£
ot

*m *m =m
p p p

where p*™ refers to the modified higher resolution grid, and the dynamics forcing terms have been mapped from p*
space. The last term on the RHS is a relaxation term, meant to constrain the state variables on the modified vertical

170 Chapter 8. Packages | - Physical Parameterizations

MITgcm Documentation, Release 1.0

grid to ‘track’ the state variables on the p* grid on some time scale, governed by . In the present implementation,
v = 1, requiring an immediate agreement between the two ’states’.

8.2.5.3 Time stepping Sequence
If we write T},5ys as the temperature (or any other state variable) on the high resolution physics grid, and Ty, as the
temperature on the coarse vertical resolution dynamics grid, then:

1. Compute the tendency due to physics processes.

2. Advance the physics state: T"H**phys(l) =T"phys(l) + 0T phys-

3. Interpolate the physics tendency to the dynamics grid, and advance the dynamics state by physics and dynamics
tendencies: 7" 4, (L) = T" ayn (L) 4 6Tayn (L) + [6Tpnys (D] (L).

4. Interpolate the dynamics tendency to the physics grid, and update the physics grid due to dynamics tendencies:
TnJrl*PhyS(l) = TnJrl**phys () + 5Tdyn (L)(1).

5. Apply correction term to physics state to account for divergence from dynamics state: 77!, (1) =
T phys (D) + A Tayn (L) = [Tpnys(D](L)}(1). Where v = 1 here.

8.2.5.4 Interpolation

In order to minimize the correction terms for the state variables on the alternative, higher resolution grid, the vertical
interpolation scheme must be constructed so that a dynamics-to-physics interpolation can be exactly reversed with a
physics-to-dynamics mapping. The simple scheme employed to achieve this is:

Coarse to fine:For all physics layers 1 in dynamics layer L, Tppys (1) = {Tayn (L)} = Tayn(L).
Fine to coarse:For all physics layers 1 in dynamics layer L, Ty (L) = [Tphys ()] = [Tpnysdp.

Where {} is defined as the dynamics-to-physics operator and [] is the physics-to-dynamics operator, 7" stands for any
state variable, and the subscripts phys and dyn stand for variables on the physics and dynamics grids, respectively.

8.2.5.5 Key subroutines, parameters and files

One of the central elements of the gridalt package is the routine which is called from subroutine gridalt_initialise to
define the grid to be used for the high end physics calculations. Routine make_phys_grid passes back the parameters
which define the grid, ultimately stored in the common block gridalt_mapping.

subroutine make_phys_grid(drF,hfacC,iml, im2, jml, jm2, Nr,
Nsx,Nsy,il,1i2, 31, 32,bi,bj,Nrphys, Lbot, dpphys, numlevphys,nlperdyn)
Chhhhkhkhkrhkhkrhkhkhkhkhhhhhhhrhkhhbhkhhbhkhhkhhhkhrhkhkrhkhkrhkhkhkdhkhkhbhkhkr kb hk bk hkhkhkhkhkrkhxkkx
c Purpose: Define the grid that the will be used to run the high-end
c atmospheric physics.

c

c Algorithm: Fit additional levels of some (~) known thickness in

c between existing levels of the grid used for the dynamics
c

c Need: Information about the dynamics grid vertical spacing

c

c Input: drF - delta r (px) edge-to—-edge

c hfacC — fraction of grid box above topography

(continues on next page)

8.2. Packages Related to Hydrodynamical Kernel 171

MITgcm Documentation, Release 1.0

(continued from previous page)

o000 000000000000000a0n

Output:

4)

im2
Jjm2

iml,
jml,
Nr
Nsx, Nsy
i1, iz
31, 32
bi, bj
Nrphys

dpphys
numlevphys
nlperdyn

Pressure levs are built up from bottom,
p(lr jlk):p(lljlkfl)

- beginning
- beginning
— number of
— number of

and ending i - dimensions
and ending j
levels in dynamics grid
processes in x and y direction
and ending i - index to fill
and ending j - index to fill
y—dir index of process

levels in physics grid

- dimensions

- beginning
- beginning
- x—dir and
— number of

- delta r (p*) edge-to-edge of physics grid
- number of levels used in the physics
— physics level number atop each dynamics layer

using p0,
+ dp (k) *ps (i, 3) /p0 (i, 3)

ps and dp:

Output dp's are aligned to fit EXACTLY between existing
levels of the dynamics vertical grid

IMPORTANT!
from the bottom up,

This routine assumes the levels are numbered

ie, level 1 is the surface.

IT WILL NOT WORK OTHERWISE!!!
This routine does NOT work for surface pressures less

(ie,

above in the atmosphere)
KA kA A A Ak Ak Ak A kA A Ak Ak kA Ak A Ak Ak A A Ak Ak Ak kA hkhkhkkkk kK

than about 350 mb

In the case of the grid used to compute the atmospheric physical forcing (fizhi package), the locations of the grid
points move in time with the MITgcm p* coordinate, and subroutine gridalt_update is called during the run to update

the locations of the grid points:

subroutine gridalt_update (myThid)

Chhirhkhhkhhkhhkhkhhkhkrhhhk bk hhhk Ak hk Ak hkhkhhkhkhkhkhhkhk ko hkhkrhkhkhkhkhhkhkhkrhkhkhdhkhhkhkrhhkhkxhkkx*x*k

c Purpose:

C
C
C
C

Calculate:

Update the pressure thicknesses of the layers of the

alternative vertical grid

dpphys

(used now for atmospheric physics) .

- new delta r (p»*)
using dpphysO (initial wvalue)

edge-to-edge of physics grid
and rstarfacC

Chhirhkhhkhhkhkhkhhhhkrhhhkhkhhkhk Ak hh kA bk hhkhkhhkhkhkhhhkhkhkhhk kA hhkhkhhkkhkhkrhkhkhAhkhhkhkrhkhhkrxhkhkx*x*k

The gridalt package also supplies utility routines which perform the mappings from one grid to the other. These
routines are called from the code which computes the fields on the alternative (fizhi) grid.

subroutine dyn2phys (gdyn, pedyn,iml, im2, jml, jm2, lmdyn, Nsx, Nsy,
idiml,idim2, jdiml, jdim2,bi, bj, windphy, pephy, Lbot, lmphy, nlperdyn,
flg, gphy)

C***

C Purpose:

C To interpolate an arbitrary quantity from the 'dynamics' eta (pstar)
C grid to the higher resolution physics grid
C Algorithm:
C Routine works one layer (edge to edge pressure) at a time.
C Dynamics —> Physics retains the dynamics layer mean value,
C weights the field either with the profile of the physics grid
C wind speed (for U and V fields), or uniformly (T and Q)
C
C Input:
C gdyn..... [im, jm, lmdyn] Arbitrary Quantity on Input Grid
C pedyn [im, jm, Ilmdyn+1] Pressures at bottom edges of input levels
(continues on next page)
172 Chapter 8. Packages | - Physical Parameterizations

MITgcm Documentation, Release 1.0

(continued from previous page)

C iml,2 ... Limits for Longitude Dimension of Input

C Jml,2 ... Limits for Latitude Dimension of Input

C Imdyn.... Vertical Dimension of Input

C Nsx...... Number of processes in x-direction

C NSy Number of processes in y-direction

C idiml,2.. Beginning and ending i-values to calculate

C jdiml, 2.. Beginning and ending j-values to calculate

C bi....... Index of process number in x-direction

C bj....... Index of process number in x-direction

C windphy.. [im, jm, lmphy] Magnitude of the wind on the output levels

C pephy [im, jm, lmphy+1] Pressures at bottom edges of output levels
C lmphy.... Vertical Dimension of Output

C nlperdyn. [im, jm, lmdyn] Highest Physics level in each dynamics level
C flg...... Flag to indicate field type (0 for T or Q, 1 for U or V)

C

C Output

C agphy..... [im, jm, lmphy] Quantity at output grid (physics grid)

C

C Notes:

C 1) This algorithm assumes that the output (physics) grid levels

C fit exactly into the input (dynamics) grid levels
C*\k******\k****\k******\k****\k****\k***********\k******\k****\k***********\k****

And similarly, gridalt contains subroutine phys2dyn.

8.2.5.6 Gridalt Diagnostics

<-Name->|Levs|<-parsing code->|<-— Units ——>|<— Tile (max=80c)
DPPHYS | 20 |SM ML |Pascal |[Pressure Thickness of Layers on Fizhi
—Grid

8.2.5.7 Dos and donts
8.2.5.8 Gridalt Reference
8.2.5.9 Experiments and tutorials that use gridalt

* Fizhi experiment, in fizhi-cs-32x32x10 verification directory

8.3 General purpose numerical infrastructure packages

8.3.1 OBCS: Open boundary conditions for regional modeling

Authors: Alistair Adcroft, Patrick Heimbach, Samar Katiwala, Martin Losch

8.3. General purpose numerical infrastructure packages 173

MITgcm Documentation, Release 1.0

8.3.1.1 Introduction

The OBCS-package is fundamental to regional ocean modelling with the MITgcm, but there are so many details to
be considered in regional ocean modelling that this package cannot accomodate all imaginable and possible options.
Therefore, for a regional simulation with very particular details, it is recommended to familiarize oneself not only with
the compile- and runtime-options of this package, but also with the code itself. In many cases it will be necessary to
adapt the obcs-code (in particular code{S/R OBCS_CALC}) to the application in question; in these cases the obcs-
package (together with the rbes-package, section ref{sec:pkg:rbcs}) is a very useful infrastructure for implementing
special regional models.

8.3.1.2 OBCS configuration and compiling

As with all MITgem packages, OBCS can be turned on or off at compile time
* using the packages. conf file by adding obcs to it,
* or using genmake?2 adding —enable=obcs or ~disable=obcs switches
* Required packages and CPP options:

— Two alternatives are available for prescribing open boundary values, which differ in the way how OB’s are
treated in time:

% A simple time-management (e.g. constant in time, or cyclic with fixed fequency) is provided through
S/R obcs_external_ fields_load.

* More sophisticated ‘real-time’ (i.e. calendar time) management is available through
obcs_prescribe_read.

— The latter case requires packages cal and exf to be enabled.
(see also Section ref{sec:buildingCode}).

Parts of the OBCS code can be enabled or disabled at compile time via CPP preprocessor flags. These options are set
in OBCS_OPTIONS.h. Table 8.1 summarizes these options.

Table 8.1: OBCS CPP options

CPP option Description
ALLOW_OBCS_NORTH enable Northern OB
ALLOW_OBCS_SOUTH enable Southern OB
ALLOW_OBCS_EAST enable Eastern OB
ALLOW_OBCS_WEST enable Western OB

ALLOW_OBCS_PRESCRIBE | enable code for prescribing OB’s

ALLOW_OBCS_SPONGE enable sponge layer code
ALLOW_OBCS_BALANCE enable code for balancing transports through OB’s
ALLOW_ORLANSKI enable Orlanski radiation conditions at OB’s

ALLOW_OBCS_STEVENS enable Stevens (1990) boundary conditions at OB’s
(currently only implemented for eastern and
western boundaries and NOT for ptracers)

8.3.1.3 Run-time parameters

Run-time parameters are set in files data.pkg, data.obcs, and data.exf if 'real-time'
prescription is requested (i.e. package :code:’ exf enabled). These parameter files are read

174 Chapter 8. Packages | - Physical Parameterizations

MITgcm Documentation, Release 1.0

in S/R packages_readparms.F, obcs_readparms.F,and exf_readparms.F, respectively. Run-time pa-

rameters may be broken into 3 categories:
1. switching on/off the package at runtime,
2. OBCS package flags and parameters,

3. additional timing flags in data . exf, if selected.

Enabling the package

The OBCS package is switched on at runtime by setting useOBCS

Package flags and parameters

Table 8.2 summarizes the runtime flags that are set in data . obcs,

.TRUE. indata.pkg.

and their default values.

Table 8.2: pkg OBCS run-time parameters

Flag/parameter default Description
basic flags & parameters (OBCS_PARMOLI)
OB_Jnorth 0 Nx-vector of J-indices (w.r.t. Ny) of Northern OB at each I-positior
OB_Jsouth 0 Nx-vector of J-indices (w.r.t. Ny) of Southern OB at each I-positior
OB_least 0 Ny-vector of I-indices (w.r.t. Nx) of Eastern OB at each J-position |
OB_Iwest 0 Ny-vector of I-indices (w.r.t. Nx) of Western OB at each J-position
useOBCSprescribe .FALSE.
useOBCSsponge .FALSE.
useOBCSbalance code{.FALSE.}
OBCS_balanceFacN/S/E/W 1 factor(s) determining the details of the balaning code
useOrlanskiNorth/South/EastWest .FALSE. turn on Orlanski boundary conditions for individual boundary
useStevensNorth/South/EastWest .FALSE. turn on Stevens boundary conditions for individual boundary
OBXyFile file name of OB field

X: N(orth) S(outh) E(ast) W(est)

y: t(emperature) s(salinity) u(-velocity) v(-velocity)

w(-velocity) eta (sea surface height)

a (sea ice area) h (sea ice thickness) sn (snow thickness) sl (sea ice
Orlanski parameters (OBCS_PARMO02)
cvelTimeScale 2000 sec averaging period for phase speed
CMAX 0.45 m/s maximum allowable phase speed-CFL for AB-II
CFIX 0.8 m/s fixed boundary phase speed
useFixedCEast .FALSE.
useFixedCWest .FALSE.
Sponge-layer parameters (OBCS_PARMO03)
spongeThickness 0 sponge layer thickness (in grid points)
Urelaxobcsinner 0 sec relaxation time scale at the innermost sponge layer point of a merid
Vrelaxobcsinner 0 sec relaxation time scale at the innermost sponge layer point of a zonal
Urelaxobcsbound 0 sec relaxation time scale at the outermost sponge layer point of a merid
Vrelaxobcsbound 0 sec relaxation time scale at the outermost sponge layer point of a zonal
Stevens parameters (OBCS_PARMO04)

Continued on

8.3. General purpose numerical infrastructure packages

175

MITgcm Documentation, Release 1.0

Table 8.2 — continued from previous page

T/SrelaxStevens 0 sec relaxation time scale for temperature/salinity
useStevensPhase Vel code{.TRUE.}
useStevensAdvection code{.TRUE.}

8.3.1.4 Defining open boundary positions

There are four open boundaries (OBs), a Northern, Southern, Eastern, and Western. All OB locations are specified
by their absolute meridional (Northern/Southern) or zonal (Eastern/Western) indices. Thus, for each zonal position
i=1,..., N, ameridional index j specifies the Northern/Southern OB position, and for each meridional position j =
1,..., Ny, azonal index i specifies the Eastern/Western OB position. For Northern/Southern OB this defines an V-
dimensional “row” array 0B_Jnorth(Nx) / 0B_Jsouth(Nx), and an N,-dimenisonal “column” array 0B_Ieast(Ny) /
0B_Iwest(Ny). Positions determined in this way allows Northern/Southern OBs to be at variable j (or y) positions,
and Eastern/Western OBs at variable ¢ (or x) positions. Here, indices refer to tracer points on the C-grid. A zero (0)
element in 0B_I ..., 0B_J... means there is no corresponding OB in that column/row. For a Northern/Southern OB,
the OB V point is to the South/North. For an Eastern/Western OB, the OB U point is to the West/East. For example,

OB_Jnorth (3) =34 means that: T (3, 34) is a an OB point U (3, 34) is a an OB point V (3, 34) is a an OB
point OB_Jsouth (3)=1 means that: T (3, 1) isa an OB point U (3, 1) is a an OB point V (3, 2) is a an OB
point OB_TIeast (10) =69 means that: T (69, 10) isaan OB point U (69, 10) isaan OB point vV (69, 10) isa
an OB point OB_Iwest (10) =1 means that: T (1, 10) isaan OB point U (2, 10) isaan OB point V(1,10) is
a an OB point

For convenience, negative values for Jnorth/Ieast refer to points relative to the Northern/Eastern edges of the
model eg. 0B_Jnorth(3) = —1 means that the point (3, Ny) is a northern OB.

Simple examples: For a model grid with :math:* N_{x}times N_{y} = 120times144° horizontal grid points with four
open boundaries along the four egdes of the domain, the simplest way of specifying the boundary points in is:

OB_TIeast = 144x-1,

or OB_TIeast = 144x120,
OB_Iwest = 144x1,
OB_Jnorth = 120«+-1,

or OB_Jnorth = 120%144,
OB_Jsouth = 120«1,

If only the first 50 grid points of the southern boundary are boundary points:

OB_Jsouth (1:50) = 50«1,

8.3.1.5 Equations and key routines

OBCS_READPARMS:

Set OB positions through arrays OB_Jnorth(Nx), OB_Jsouth(Nx), OB_Ieast(Ny), OB_Iwest(Ny), and runtime flags
(see Table [tab:pkg:obcs:runtime:sub:flags]).

OBCS_CALC:

Top-level routine for filling values to be applied at OB for 7', .S, U, V, 7 into corresponding “slice” arrays (z, z), (y, 2)
for each OB: 0B|N/S/E/W|[t/s/u/v]; e.g. for salinity array at Southern OB, array name is 0BSt. Values filled are
either

176 Chapter 8. Packages | - Physical Parameterizations

MITgcm Documentation, Release 1.0

* constant vertical 7', S profiles as specified in file data (tRef(Nr), sRef(Nr)) with zero velocities U, V,

T,S,U,V values determined via Orlanski radiation conditions (see below),
* prescribed time-constant or time-varying fields (see below).

* use prescribed boundary fields to compute Stevens boundary conditions.

ORLANSKI:

Orlanski radiation conditions [Orl76], examples can be found in verification/dome and verification/
tutorial_plume_on_slope

(ref{sec:eg-gravityplume}).

OBCS_PRESCRIBE_READ:

When useOBCSprescribe = .TRUE. the model tries to read temperature, salinity, u- and v-velocities from files
specified in the runtime parameters OB [N/S/E/W] [t/s/u/v]File. These files are the usual IEEE, big-endian
files with dimensions of a section along an open boundary:

* For North/South boundary files the dimensions are (N, x N, x time levels), for East/West boundary files the
dimensions are (N, x N, x time levels).

* If a non-linear free surface is used (ref{sec:nonlinear-freesurface}), additional files OB [N/S/E/W]etaFile
for the sea surface height eta with dimension (N, /,, x time levels) may be specified.

¢ If non-hydrostatic dynamics are used (ref{sec:non-hydrostatic}), additional files OB [N/S/E/W] wF 1 le for the
vertical velocity w with dimensions (N, ,, x N, x time levels) can be specified.

e [f useSEAICE=.TRUE. then additional files OB[N/S/E/W] [a, h, s1, sn,uice, vice] for seaice area,
thickness (HEFF'), seaice salinity, snow and ice velocities (I, /,, x time levels) can be specified.

Asin S/R external_fields_load or the exf-package, the code reads two time levels for each variable,
e.g.0BNuO and OBNul, and interpolates linearly between these time levels to obtain the value OBNu at the current
model time (step). When the ex f-package is used, the time levels are controlled for each boundary separately in the
same way as the exf-fields in data.exf, namelist EXF_NML_OBCS. The runtime flags follow the above naming
conventions, e.g. for the western boundary the corresponding flags are OBCWstartdatel/2 and OBCWperiod.
Sea-ice boundary values are controlled separately with siobWstartdatel/2 and siobWperiod. When the
exf-package is not used, the time levels are controlled by the runtime flags externForcingPeriod and
externForcingCycleindata, see verification/exp4 for an example.

OBCS_CALC_STEVENS:

(THE IMPLEMENTATION OF THESE BOUNDARY CONDITIONS IS NOT COMPLETE. PASSIVE TRACERS,
SEA ICE AND NON-LINEAR FREE SURFACE ARE NOT SUPPORTED PROPERLY.)

The boundary conditions following [S7e90] require the vertically averaged normal velocity (originally specified as
a stream function along the open boundary) %, and the tracer fields x,, (note: passive tracers are currently not
implemented and the code stops when package code{ptracers} is used together with this option). Currently, the code
vertically averages the normal velocity as specified in code{ OB[E,W]u} or code{OB[N,S]v}. From these prescribed
values the code computes the boundary values for the next timestep n + 1 as follows (as an example, we use the
notation for an eastern or western boundary):

o u" Ty, 2) = Uy (y)+(u')"(y,), where (u')" is the deviation from the vertically averaged velocity at timestep
n on the boundary. (u)™ is computed in the previous time step n from the intermediate velocity w* prior to the

8.3. General purpose numerical infrastructure packages 177

MITgcm Documentation, Release 1.0

correction step (see section [sec:time:sub:stepping], e.g., eq.([eq:ustar-backward-free-surface])). (This velocity
is not available at the beginning of the next time step n + 1, when S/R OBCS_CALC/OBCS_CALC_STEVENS
are called, therefore it needs to be saved in S/R DYNAMICS by calling S/R OBCS_SAVE_UV_N and also
stored in a separate restart files pickup_stevens [N/S/E/W].${iteration}.data)

o If u™*! is directed into the model domain, the boudary value for tracer is restored to the prescribed values:

At
Xn+1 = Xn + T(Xob - Xn)7
X

where 7, is the relaxation time scale T/SrelaxStevens. The new x" ! is then subject to the advection by
untl,

o If u™t! is directed out of the model domain, the tracer X" on the boundary at timestep n+ 1 is estimated from
advection out of the domain with u™! + ¢, where c is a phase velocity estimated as %% / g—;‘. The numerical
scheme is (as an example for an eastern boundary):

n _ N
Xiy,g.k ~ Xiy—14k .
C ib,J,k

Axiznj

n+l _ .n n+1 o
Xiy ik = Xiy g + AU+ 0)iy ik

where 7, is the boundary index. For test purposes, the phase velocity contribution or the entire advection can be
turned off by setting the corresponding parameters useStevensPhaseVel and useStevensAdvection
to .FALSE..

See [Ste90] for details. With this boundary condition specifying the exact net transport across the open boundary is
simple, so that balancing the flow with (S/R~OBCS_BALANCE_FLOW, see next paragraph) is usually not necessary.

OBCS_BALANCE_FLOW:

When turned on (ALLOW_OBCS_BALANCE defined in OBCS_OPTIONS.h and useOBCSbalance=.true.
in data.obcs/OBCS_PARMO01), this routine balances the net flow across the open boundaries. By default the net
flow across the boundaries is computed and all normal velocities on boundaries are adjusted to obtain zero net inflow.

This behavior can be controlled with the runtime flags OBCS_balanceFacN/S/E/W. The values of these flags
determine how the net inflow is redistributed as small correction velocities between the individual sections. A value
—1 balances an individual boundary, values > 0 determine the relative size of the correction. For example, the values

OBCS_balanceFacE = 1., OBCS_balanceFacw = -1., OBCS_balanceFacN = 2.,
OBCS_balanceFacS 0.,

make the model

* correct Western OBWu by substracting a uniform velocity to ensure zero net transport through the Western open
boundary;

* correct Eastern and Northern normal flow, with the Northern velocity correction two times larger than the Eastern
correction, but not the Southern normal flow, to ensure that the total inflow through East, Northern, and Southern
open boundary is balanced.

The old method of balancing the net flow for all sections individually can be recovered by setting all flags to -1. Then
the normal velocities across each of the four boundaries are modified separately, so that the net volume transport across
each boundary is zero. For example, for the western boundary at ¢ = 1, the modified velocity is:

u(y,) — / udydz ~ OBNu(j, k) = > OBNu(j, k)hu iy, j, k) Ayc (iv, j) Az (k).
western boundary T

This also ensures a net total inflow of zero through all boundaries, but this combination of flags is not useful if you want

to simulate, say, a sector of the Southern Ocean with a strong ACC entering through the western and leaving through

the eastern boundary, because the value of -1 for these flags will make sure that the strong inflow is removed.

Clearly, gobal balancing with OBCS_balanceFacE/W/N/S > 0 is the preferred method.

178 Chapter 8. Packages | - Physical Parameterizations

MITgcm Documentation, Release 1.0

OBCS_APPLY_*:
OBCS_SPONGE:

The sponge layer code (turned on with ALLOW_OBCS_SPONGE and useOBCSsponge) adds a relaxation term
to the right-hand-side of the momentum and tracer equations. The variables are relaxed towards the boundary values
with a relaxation time scale that increases linearly with distance from the boundary

oponge) _ X —[(L=dL)xpe +6Lx/L _ x—[(1=Uxso+1
x (L —6L)r, +0L7;]/L (1= D7 + 73]

where x is the model variable (U/V/T/S) in the interior, xpc the boundary value, L the thickness of the
sponge layer (runtime parameter spongeThickness in number of grid points), 6L € [0, L] (%L =1 €
[0,1]) the distance from the boundary (also in grid points), and 73, (runtime parameters Urelaxobcsbound
and Vrelaxobcsbound) and 7; (runtime parameters Urelaxobcsinner and Vrelaxobcsinner) the
relaxation time scales on the boundary and at the interior termination of the sponge layer. The pa-
rameters Urelaxobcsbound/inner set the relaxation time scales for the Eastern and
Western boundaries, :code: Vrelaxobcsbound/inner forthe Northern and Southern boundaries.

OB’s with nonlinear free surface

8.3.1.6 Flow chart

C !CALLING SEQUENCE:

8.3.1.7 OBCS diagnostics

Diagnostics output is available via the diagnostics package (see Section [sec:pkg:diagnostics]). Available output fields
are summarized in Table [tab:pkg:obcs:diagnostics].

[tab:pkg:obcs:diagnostics]

<-Name->|Levs|grid|<-- Units ——>|<- Tile (max=80c)

8.3.1.8 Reference experiments

In the directory verifcation, the following experiments use obcs:

e exp4: box with 4 open boundaries, simulating flow over a Gaussian bump based on , also tests Stevens-
boundary conditions;

* dome: based on the project “Dynamics of Overflow Mixing and Entrainment” (http://www.rsmas.miami.edu/
personal/tamay/DOME/dome.html), uses Orlanski-BCs;

e internal_wave: uses a heavily modified S/R~OBCS_CALC
* :code:seaice_obcs‘: simple example who to use the sea-ice related code, based on 1ab_sea;

* tutorial plume_on_slope: uses Orlanski-BCs, see also section [sec:eg-gravityplume].

8.3. General purpose numerical infrastructure packages 179

http://www.rsmas.miami.edu/personal/tamay/DOME/dome.html
http://www.rsmas.miami.edu/personal/tamay/DOME/dome.html

MITgcm Documentation, Release 1.0

8.3.1.9 References
8.3.1.10 Experiments and tutorials that use obcs

* tutorial_plume_on_slope (section~ref{sec:eg-gravityplume})

8.3.2 RBCS Package

8.3.2.1 Introduction

A package which provides the flexibility to relax fields (temperature, salinity, ptracers) in any 3-D location: so could
be used as a sponge layer, or as a “source” anywhere in the domain.

For a tracer (7T') at every grid point the tendency is modified so that:

dI' dT My
dt — dt T

(T - Trbc)

where M, is a 3-D mask (no time dependence) with values between 0 and 1. Where M, is 1, relaxing timescale is
1/7r. Where it is O there is no relaxing. The value relaxed to is a 3-D (potentially varying in time) field given by T}

A seperate mask can be used for T,S and ptracers and each of these can be relaxed or not and can have its own timescale
7. These are set in data.rbcs (see below).

8.3.2.2 Key subroutines and parameters

The only compile-time parameter you are likely to have to change is in RBCS. h, the number of masks, PARAME-
TER(maskLEN = 3), see below.

The runtime parameters are set in data.rbcs:

Set in RBCS_PARMOL1: - rbesForcingPeriod: time interval between forcing fields (in seconds), zero means constant-
in-time forcing. - rbesForcingCycle: repeat cycle of forcing fields (in seconds), zero means non-cyclic forcing. -
rbesForcingOffset: time offset of forcing fields (in seconds, default 0); this is relative to time averages starting at t =
0, i.e., the first forcing record/file is placed at rbesForcingOffset + rbesForcingPeriod/2; see below for examples.
- rbesSingleTimeFiles: true or false (default false), if true, forcing fields are given 1 file per rbcsForcingPeriod. -
deltaTrbcs: time step used to compute the iteration numbers for rbcsSingleTimeFiles=T. - rbesIter0: shift in iteration
numbers used to label files if rbcsSingleTimeFiles=T (default 0, see below for examples). - useRBCtemp: true or false
(default false) - useRBCsalt: true or false (default false) - useRBCptracers: true or false (default false), must be using
ptracers to set true - tauRelaxT: timescale in seconds of relaxing in temperature (7 in equation above). Where mask is
1, relax rate will be 1/tauRelaxT. Default is 1. - tauRelaxS: same for salinity. - relaxMaskFile(irbc): filename of 3-D
file with mask (M, in equation above. Need a file for each irbc. 1=temperature, 2=salinity, 3=ptracer01, 4=ptracer(2
etc. If the mask numbers end (see maskLEN) are less than the number tracers, then relaxMaskFile(maskLEN) is used
for all remaining ptracers. - relaxTFile: name of file where temperatures that need to be relaxed to (7;.4. in equation
above) are stored. The file must contain 3-D records to match the model domain. If rbcsSingleTimeFiles=F, it must
have one record for each forcing period. If T, there must be a separate file for each period and a 10-digit iteration
number is appended to the file name (see Table [tab:pkg:rbcs:timing] and examples below). - relaxSFile: same for
salinity.

Set in RBCS_PARMO?2 for each of the ptracers (iTrc): - useRBCptrnum(iTrc): true or false (default is false). -
tauRelaxPTR(iTrc): relax timescale. - relaxPtracerFile(iTrc): file with relax fields.

180 Chapter 8. Packages | - Physical Parameterizations

MITgcm Documentation, Release 1.0

8.3.2.3 Timing of relaxation forcing fields

For constant-in-time relaxation, set rbcsForcingPeriod=0. For time-varying relaxation, Table [tab:pkg:rbcs:timing]
illustrates the relation between model time and forcing fields (either records in one big file or, for rbcsSingleTime-
Files=T, individual files labeled with an iteration number). With rbcsSingleTimeFiles=T, this is the same as in the
offline package, except that the forcing offset is in seconds.

Table 8.3: Timing of RBCS relaxation fields

robcsSingleTimeFiles = T F

c=0 c#0 c#0
model time file number file number record
to — p/2 ig 10 + C/Atrbcs C/p
to + p/2 Z.0 + p/Atrbcs 1’0 + p/Atrbcs 1
to+p+ p/2 10 + 2p/Atrbcs 10 + 2p/Atrbcs 2
to+c—p/2 | ... 10 + ¢/ Atrpes c/p

where

p = rbcsForcingPeriod
¢ = rbesForcingCycle
to = rbesForcingOffset
1o = rbeslterQ

Atges = deltaTrbes
8.3.2.4 Example 1: forcing with time averages starting at¢ =0
Cyclic data in a single file

Set rbcsSingleTimeFiles=F and rbcsForcingOffset=0, and the model will start by interpolating the last and first records
of rbes data, placed at —p/2 and p/2, resp., as appropriate for fields averaged over the time intervals [—p, 0] and [0, p].

Non-cyclic data, multiple files

Set rbcsForcingCycle=0 and rbesSingleTimeFiles=T. With rbcsForcingOffset=0, rbcslter0=0 and deltaTr-
bes=rbcsForcingPeriod, the model would then start by interpolating data from files relax*File.0000000000.data and
relax*File.0000000001.data, ... , again placed at —p/2 and p/2.

8.3.2.5 Example 2: forcing with snapshots startingat¢ =0
Cyclic data in a single file

Set rbesSingleTimeFiles=F and rbesForcingOffset=—p/2, and the model will start forcing with the first record at
t=0.

8.3. General purpose numerical infrastructure packages 181

MITgcm Documentation, Release 1.0

Non-cyclic data, multiple files

Set rbesForcingCycle=0 and rbesSingleTimeFiles=T. In this case, it is more natural to set rbcsForcingOffset=+p/2.
With rbeslter0=0 and deltaTrbcs=rbcsForcingPeriod, the model would then start with data from files re-
lax*File.0000000000.data at ¢ = 0. It would then proceed to interpolate between this file and files re-
lax*File.0000000001.data at t = rbesForcingPeriod.

8.3.2.6 Do’s and Don’ts
8.3.2.7 Reference Material
8.3.2.8 Experiments and tutorials that use rbcs

In the directory , the following experiments use rbcs:

* exp4 : box with 4 open boundaries, simulating flow over a Gaussian bump based on [/AHM97]

8.3.3 PTRACERS Package

8.3.3.1 Introduction

This is a “’passive” tracer package. Passive here means that the tracers don’t affect the density of the water (as opposed
to temperature and salinity) so no not actively affect the physics of the ocean. Tracers are initialized, advected, diffused
and various outputs are taken care of in this package. For methods to add additional sources and sinks of tracers use
the pkg/gchem (section [sec:pkg:gchem]).

Can use up tp 3843 tracers. But can not use pkg/diagnostics with more than about 90 tracers. Use
utils/matlab/ioLb2num.m and num?2ioLLb.m to find correspondence between tracer number and tracer designation in
the code for more than 99 tracers (since tracers only have two digit designations).

8.3.3.2 Equations

8.3.3.3 Key subroutines and parameters

The only code you should have to modify is: PTRACERS_SIZE.h where you need to set in the number of tracers to
be used in the experiment: PTRACERS_num.

Run time parameters set in data.ptracers:

* PTRACERS_Iter0 which is the integer timestep when the tracer experiment is initialized. If nlter0 = PTRAC-
ERS_Iter0 then the tracers are initialized to zero or from initial files. If nlter0 > PTRACERS_IterO then tracers
(and previous timestep tendency terms) are read in from a the ptracers pickup file. Note that tracers of zeros will
be carried around if nlter0 < PTRACERS_IterO.

¢ PTRACERS_numInUse: number of tracers to be used in the run (needs to be <= PTRACERS_num set in
PTRACERS_SIZE.h)

* PTRACERS_dumpFreq: defaults to dumpFreq (set in data)

* PTRACERS_taveFreq: defaults to taveFreq (set in data)

* PTRACERS_monitorFreq: defaults to monitorFreq (set in data)

¢ PTRACERS_timeave_mnc: needs useMNC, timeave_mnc, default to false

* PTRACERS_snapshot_mnc: needs useMNC, snapshot_mnc, default to false

182 Chapter 8. Packages | - Physical Parameterizations

MITgcm Documentation, Release 1.0

PTRACERS_monitor_mnc: needs useMNC, monitor_mnc, default to false
PTRACERS_pickup_write_mnc: needs useMNC, pickup_write_mnc, default to false
PTRACERS_pickup_read_mnc: needs useMNC, pickup_read_mnc, default to false

PTRACERS_useRecords: defaults to false. If true, will write all tracers in a single file, otherwise each tracer
in a seperate file.

The following can be set for each tracer (tracer number iTrc):

PTRACERS_advScheme(iTrc) will default to saltAdvScheme (set in data). For other options see Table
[tab:advectionShemes:sub:summary].

PTRACERS_ImplVertAdv(iTrc): implicit vertical advection flag, default to .FALSE.
PTRACERS_diffKh(iTrc): horizontal Laplacian Diffusivity, dafaults to diffKhS (set in data).
PTRACERS_diffK4(iTrc): Biharmonic Diffusivity, defaults to diffK4S (set in data).
PTRACERS_diffKr(iTrc): vertical diffusion, defaults to un-set.

PTRACERS_diffKrNr(k,iTrc): level specific vertical diffusion, defaults to diffKrNrS. Will be set to PTRAC-
ERS_diffKTr if this is set.

PTRACERS_ref(k,iTrc): reference tracer value for each level k, defaults to 0. Currently only used for dilu-
tion/concentration of tracers at surface if PTRACERS_EvPrRn(iTrc) is set and convertFW2Salt (set in data) is
set to something other than -1 (note default is convertFW2Salt=35).

PTRACERS_EvPrRn(iTrc): tracer concentration in freshwater. Needed for calculation of dilu-
tion/concentration in surface layer due to freshwater addition/evaporation. Defaults to un-set in which case
no dilution/concentration occurs.

PTRACERS_useGMRedi(iTrc): apply GM or not. Defaults to useGMREdi.
PTRACERS_useKPP(iTrc): apply KPP or not. Defaults to useKPP.

PTRACERS _initialFile(iTrc): file with initial tracer concentration. Will be used if PTRACERS_IterQ = nlterO.
Default is no name, in which case tracer is initialised as zero. If PTRACERS_IterQ < nlter0O, then tracer con-
centration will come from pickup_ptracer.

PTRACERS_names(iTrc): tracer name. Needed for netcdf. Defaults to nothing.
PTRACERS_long_names(iTrc): optional name in long form of tracer.

PTRACERS_units(iTrc): optional units of tracer.

8.3.3.4 PTRACERS Diagnostics

Note that these will only work for 90 or less tracers (some problems with the numbering/designation over this number)

<-Name->|Levs|<-parsing code->|<-— TUnits ——>|<—- Tile (max=80c)

TRACO1 | 15 |SM P MR mol C/m |[Mass-Weighted Dissolved Inorganic,,
—Carbon

UTRACO01 | 15 |UU 171MR mol C/m.m/s |Zonal Mass-Weighted Transp of
—Dissolved Inorganic Carbon

VTRACO1 | 15 |VV 170MR |[mol C/m.m/s |[Merid Mass-Weighted Transp of
—Dissolved Inorganic Carbon

WIRACO1 | 15 |WM MR lmol C/m.m/s |[Vert Mass-Weighted Transp of
—Dissolved Inorganic Carbon

ADVrTrOl| 15 |WM LR mol C/m.m"3/s |Vertical Advective Flux of |
—Dissolved Inorganic Carbon (continues on next page)

8.3. General purpose numerical infrastructure packages 183

MITgcm Documentation, Release 1.0

(continued from previous page)

ADVxTr01l| 15 |UU 175MR |mol
—Dissolved Inorganic Carbon
ADVyTrO1l| 15 |VV 174MR |mol
—Dissolved Inorganic Carbon
DFrETr01| 15 |WM LR |mol
—Inorganic Carbon (Explicit part)
DIFxTr01| 15 |UU 178MR [mol
—Dissolved Inorganic Carbon
DIFyTr0l| 15 |VV 177MR |mol
—Dissolved Inorganic Carbon
DFrITrQ01l| 15 |WM LR |mol
—Inorganic Carbon (Implicit part)
TRACO02 [15 |SM P MR [mol
UTRACO02 | 15 |UU 182MR |mol
—~Alkalinity

VIRACO02 | 15 |VvV 181MR |mol
—Alkalinity

WTRACO02 | 15 |WM MR |mol
—Alkalinity

ADVrTr02| 15 |WM LR |mol
—~Alkalinity

ADVxTr02| 15 |UU 186MR |mol
—Alkalinity

ADVyTr02| 15 |VV 185MR |mol
—Alkalinity

DFrETr02| 15 |WM LR |mol
— (Explicit part)

DIFxTr02| 15 |UU 189MR |mol
—Alkalinity

DIFyTr02| 15 [VV 188MR |mol
—Alkalinity

DFrITr02| 15 |WM LR |mol
— (Implicit part)

TRACO03 | 15 |[SM P MR |mol
UTRACO3 | 15 |UU 193MR [mol
—Phosphate

VTRACO03 | 15 |VV 192MR |mol
—Phosphate

WTRACO3 | 15 |WM MR [mol
—Phosphate

ADVrTr03| 15 |WM LR [mol
ADVxTr03| 15 |UU 197MR [mol
ADVyTr03| 15 |VV 196MR [mol
DFrETr03| 15 |WM LR [mol
— (Explicit part)

DIFxTr03| 15 |UU 200MR |mol

C/m.

C/m.

C/m.

C/m.

C/m.

C/m.

eq/
eq/

eq/
eq/
eq/
eq/
eq/
eq/
eq/
eq/
eq/

P/m

P/m.
P/m.
P/m.
P/m.
P/m.

P/m.
P/m.

m~3/s

m~3/s

m~3/s

m~3/s

m~3/s

m~3/s

.m/s

.m/s

.m/s

.m"3/s

.m"3/s

.m"3/s

.m"3/s

.m"3/s

.m"3/s

.m"3/s

m/s
m/s
m/s
m*3/s
m"3/s

m~3/s
m~3/s

| Zonal Advective Flux of
|[Meridional Advective Flux of
|[Vertical Diffusive Flux of Dissolved,
| Zonal Diffusive Flux of |
|[Meridional Diffusive Flux of |

|[Vertical Diffusive Flux of Dissolved,

|[Mass-Weighted Alkalinity
|Zonal Mass-Weighted Transp of

|[Merid Mass-Weighted Transp of
|[Vert Mass-Weighted Transp of
|[Vertical Advective Flux of
| Zonal Advective Flux of

|[Meridional Advective Flux of |

|[Vertical Diffusive Flux of Alkalinity,
| Zonal Diffusive Flux of
|[Meridional Diffusive Flux of |

|[Vertical Diffusive Flux of Alkalinity,

|[Mass-Weighted Phosphate
|Zonal Mass-Weighted Transp of

|[Merid Mass-Weighted Transp of

|[Vert Mass-Weighted Transp of

|Vertical Advective Flux of Phosphate
| Zonal Advective Flux of Phosphate
|[Meridional Advective Flux of Phosphate
|[Vertical Diffusive Flux of Phosphate

| Zonal Diffusive Flux of Phosphate

——>|<— Tile (max=80c)

DIFyTr03| 15 |VV 199MR |mol
DFrITr03| 15 |WM LR [mol
— (Implicit part)

TRACO04 | 15 |SM P MR [mol
—Phosphorus

UTRAC04 | 15 |UU 204MR |mol
—Dissolved Organic Phosphorus
VTRAC04 | 15 |VV 203MR |mol

P/m.

P/m.

.m"3/s
.m"3/s

m/s

m/s

[Meridional Diffusive Flux of Phosphate
|[Vertical Diffusive Flux of Phosphate,,

|[Mass-Weighted Dissolved Organic,,
|Zonal Mass-Weighted Transp of

|[Merid Mass-Weighted Transp of

—Dissolved Organic Phosphorus

(continues on next page)

184

Chapter 8. Packages | - Physical Parameterizations

MITgcm Documentation, Release 1.0

(continued from previous page)

WTRACO04 | 15 |WM MR |mol P/m.
—Dissolved Organic Phosphorus
ADVrTr04| 15 |WM LR mol P/m.
—Dissolved Organic Phosphorus
ADVxTr04| 15 |UU 208MR mol P/m.
—Dissolved Organic Phosphorus
ADVyTr04| 15 |[VV 207MR |mol P/m.
—Dissolved Organic Phosphorus
DFrETr04| 15 |WM LR mol P/m.
—Organic Phosphorus (Explicit part)
DIFxTr04| 15 |UU 211MR |lmol P/m.
—Dissolved Organic Phosphorus
DIFyTr04| 15 |VV 210MR |mol P/m.
—Dissolved Organic Phosphorus
DFrITr04| 15 |WM LR mol P/m.
—0Organic Phosphorus (Implicit part)
TRACO0S5 | 15 [SM P MR [mol O/m
UTRACOS5 | 15 |UU 215MR [mol O/m.
—Dissolved Oxygen

VTRACO0S5 | 15 |VV 214MR |mol O/m.
—Dissolved Oxygen

WTRACOS5 | 15 |WM MR |mol O/m.
—Dissolved Oxygen

ADVrTr05| 15 |WM LR mol O/m.
—Dissolved Oxygen

ADVxTr05| 15 |UU 219MR Imol O/m.
—Dissolved Oxygen

ADVyTr05| 15 |VV 218MR |[mol O/m.
—Dissolved Oxygen

DFrETr05| 15 |WM LR mol O/m.
—0Oxygen (Explicit part)

DIFxTr05| 15 |UU 222MR Imol O/m.
—Dissolved Oxygen

DIFyTr05| 15 |VvV 22 1MR |[mol O/m.
—Dissolved Oxygen

DFrITr05| 15 |WM LR mol O/m.
—0Oxygen (Implicit part)

m/s

m~3/s

m~3/s

m~3/s

m~3/s

m~3/s

m~3/s

m~3/s

m/s

m/s

m/s

m~3/s

m"3/s

m~3/s

m~3/s

m"3/s

m~3/s

m~3/s

|[Vert Mass-Weighted Transp of
|[Vertical Advective Flux of |
| Zonal Advective Flux of

|[Meridional Advective Flux of |

|[Vertical Diffusive Flux of Dissolved,

| Zonal

Diffusive Flux of

|[Meridional Diffusive Flux of |

|[Vertical Diffusive Flux of Dissolved,

|[Mass-Weighted Dissolved Oxygen

| Zonal

Mass-Weighted Transp of

|[Merid Mass-Weighted Transp of

|[Vert Mass-Weighted Transp of
|Vertical Advective Flux of
| Zonal Advective Flux of

|[Meridional Advective Flux of

|[Vertical Diffusive Flux of Dissolved,

| Zonal

Diffusive Flux of

|[Meridional Diffusive Flux of

|[Vertical Diffusive Flux of Dissolved,

8.3.3.5 Do’s and Don’ts

8.3.3.6 Reference Material

8.4 Ocean Packages

8.4.1 GMREDI: Gent-McWilliams/Redi SGS Eddy Parameterization

There are two parts to the Redi/GM parameterization of geostrophic eddies. The first, the Redi scheme [RedS82], aims
to mix tracer properties along isentropes (neutral surfaces) by means of a diffusion operator oriented along the local
isentropic surface. The second part, GM [GM90][GWMM?95] , adiabatically re-arranges tracers through an advective
flux where the advecting flow is a function of slope of the isentropic surfaces.

The first GCM implementation of the Redi scheme was by [Cox87] in the GFDL ocean circulation model. The
original approach failed to distinguish between isopycnals and surfaces of locally referenced potential density (now
called neutral surfaces) which are proper isentropes for the ocean. As will be discussed later, it also appears that the

8.4. Ocean Packages

185

MITgcm Documentation, Release 1.0

Cox implementation is susceptible to a computational mode. Due to this mode, the Cox scheme requires a background
lateral diffusion to be present to conserve the integrity of the model fields.

The GM parameterization was then added to the GFDL code in the form of a non-divergent bolus velocity. The method
defines two stream-functions expressed in terms of the isoneutral slopes subject to the boundary condition of zero value
on upper and lower boundaries. The horizontal bolus velocities are then the vertical derivative of these functions. Here
in lies a problem highlighted by /GGP+98]: the bolus velocities involve multiple derivatives on the potential density
field, which can consequently give rise to noise. Griffies et al. point out that the GM bolus fluxes can be identically
written as a skew flux which involves fewer differential operators. Further, combining the skew flux formulation and
Redi scheme, substantial cancellations take place to the point that the horizontal fluxes are unmodified from the lateral
diffusion parameterization.

8.4.1.1 Redi scheme: Isopycnal diffusion

The Redi scheme diffuses tracers along isopycnals and introduces a term in the tendency (rhs) of such a tracer (here
7) of the form:

V- IipKRediVT

where &, is the along isopycnal diffusivity and Kreq; i a rank 2 tensor that projects the gradient of 7 onto the
isopycnal surface. The unapproximated projection tensor is:

1+52 5,5, S,

1 .
KRedi = 7—az | S5 1+S5; S,
1+ S| S, S, IS[2
Here, S; = —0,0/0,0 and Sy = —0,0/0.0 are the components of the isoneutral slope.

The first point to note is that a typical slope in the ocean interior is small, say of the order 10~%. A maximum slope
might be of order 102 and only exceeds such in unstratified regions where the slope is ill defined. It is therefore jus-
tifiable, and customary, to make the small slope approximation, |S| << 1. The Redi projection tensor then becomes:

1 0 S,
KReai = o 1 S
s, S, ISP

8.4.1.2 GM parameterization

The GM parameterization aims to represent the “advective” or “transport” effect of geostrophic eddies by means of a
“bolus” velocity, u*. The divergence of this advective flux is added to the tracer tendency equation (on the rhs):

-V - 1u*

The bolus velocity u* is defined as the rotational of a streamfunction F*=(Fy, F}7, 0):

ut =V x F* = +0.F} ,

and thus is automatically non-divergent. In the GM parameterization, the streamfunction is specified in terms of the
isoneutral slopes S, and Sy:

Fy = —krauSy
Fj= komS:

186 Chapter 8. Packages | - Physical Parameterizations

MITgcm Documentation, Release 1.0

with boundary conditions F;; = Fj7 = 0 on upper and lower boundaries. In the end, the bolus transport in the GM
parameterization is given by:

u* —az(liGMSz)
u = v* = —0.(kamSy)
w* On (ke Sy) + Oy (kam Sy)

This is the form of the GM parameterization as applied by Donabasaglu, 1997, in MOM versions 1 and 2.

Note that in the MITgcm, the variables containing the GM bolus streamfunction are:
GM_PSiX o HGMS;C o F;
GM_PSiY a HGMSy o —F; ’
8.4.1.3 Griffies Skew Flux

[Gri98] notes that the discretisation of bolus velocities involves multiple layers of differencing and interpolation that
potentially lead to noisy fields and computational modes. He pointed out that the bolus flux can be re-written in terms
of a non-divergent flux and a skew-flux:

—0,(kgmSz)T
u'r = —0;(kamSy)T
(83:HGMS37 + 3yI£GMSy)T
—0,(kGMmSxT) KoM Sz0,T
= —0,(kaMmSyT) + kG Sy0,T
83;(I£Gjusx7') + 8y(I£GMSyT) — KoM S0, T — HGMSyayT

The first vector is non-divergent and thus has no effect on the tracer field and can be dropped. The remaining flux can
be written:

u'r = 7HGMKGMVT
where
0 0 -5,
Kev=| 0 0 -8,
S, S, 0

is an anti-symmetric tensor.

This formulation of the GM parameterization involves fewer derivatives than the original and also involves only terms
that already appear in the Redi mixing scheme. Indeed, a somewhat fortunate cancellation becomes apparent when we
use the GM parameterization in conjunction with the Redi isoneutral mixing scheme:

IﬁpKRediVT —u'T = (/prRedi + EGMKGM)VT

In the instance that kg = K, then

1 0 0
kpKRedi + iamKaem = £, 0 1 0
25, 25, |S|?

which differs from the variable Laplacian diffusion tensor by only two non-zero elements in the z-row.

Subroutine

S/R GMREDI_CALC_TENSOR (pkg/gmredi/gmredi_calc_tensor.F)

8.4. Ocean Packages 187

MITgcm Documentation, Release 1.0

0. SlopeX (argument on entry)
oy: SlopeY (argument on entry)
o SlopeY (argument)

Sz SlopeX (argument on exit)

Sy: SlopeY (argument on exit)

8.4.1.4 Variable xq

[VMHS97] suggest making the eddy coefficient, kgas, a function of the Eady growth rate, |f|/+ Ri. The formula

involves a non-dimensional constant, «, and a length-scale L:

—_—=z
|f]

vV Ri

where the Eady growth rate has been depth averaged (indicated by the over-line). A local Richardson number is
defined Ri = N?/(0u/dz)? which, when combined with thermal wind gives:

Koy = al?

L (52 GRIvel® M

Ri~ N2 N2z [f]2N?

where M? is defined M? = /;l |Vo|. Substituting into the formula for ks gives:

z —_—ez

M2
KGM = aLQW = aLzﬁN = al?|S|N

8.4.1.5 Tapering and stability

Experience with the GFDL model showed that the GM scheme has to be matched to the convective parameterization.
This was originally expressed in connection with the introduction of the KPP boundary layer scheme /LM D94] but in
fact, as subsequent experience with the MIT model has found, is necessary for any convective parameterization.

Subroutine

S/R GMREDI_SLOPE_LIMIT (pkg/gmredi/gmredi_slope_limit.F)
0z, Sz: SlopeX (argument)

oy, Sy: SlopeY (argument)

0,: dSigmadRReal (argument)

zx: dRdSigmaltd (argument)

8.4.1.6 Slope clipping

Deep convection sites and the mixed layer are indicated by homogenized, unstable or nearly unstable stratification. The
slopes in such regions can be either infinite, very large with a sign reversal or simply very large. From a numerical point
of view, large slopes lead to large variations in the tensor elements (implying large bolus flow) and can be numerically

188 Chapter 8. Packages | - Physical Parameterizations

MITgcm Documentation, Release 1.0

0.8

0.7

0.6

Taper " {(S)
o
(&}
T

0.4 \ N
\
\
0.3+ \ |
\
\
0.2+ \ R
\
\
AN
01— DMI5<t+ta SQC_S]Sd 312 N N 1
GKW91 (S__ /ISl) -
—_ = max ~
0 T | s
10" 107 107 107"
Slope ISI
Figure 8.6: Taper functions used in GKW91 and DM95.
0.01 = =
- 2(; d / AN
_ _ GKwot (S _ /1SS , N
0.008 Cox Slope Clipping , / N b
/ S N
L / > |
0.006 , S
, -
/
0.004 , |
/
@ Y
L o002} R
1]
‘0
gx 0
2}
[}
2
3 -0.002| i
L 7
i} /
/
-0.004 / R
/
~ N /
-0.006 [S L/ E
<
~ /
N /
-0.008 N , i
N
\ /
\ /
-0.01 | 4 | | | | |
20.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02

Slope S

Figure 8.7: Effective slope as a function of ‘true’ slope using Cox slope clipping, GKW91 limiting and DM95 limiting.

8.4. Ocean Packages 189

MITgcm Documentation, Release 1.0

unstable. This was first recognized by [Cox87] who implemented “slope clipping” in the isopycnal mixing tensor.
Here, the slope magnitude is simply restricted by an upper limit:

|Vo| = \/ oz +o3

i :
Stim = —Jg | where S,,q. i @ parameter
max
o = min(o, Siim)
[0, 0y]
[52,5] = -

Notice that this algorithm assumes stable stratification through the “min” function. In the case where the fluid is well
stratified (o, < Sy;,) then the slopes evaluate to:

_ [0, 0]
[y 8y] = .
while in the limited regions (o, > Sj;,) the slopes become:
[Jxv Jy}
Sz, S T e
[y} |VU|/Smaw

so that the slope magnitude is limited ,/s2 + 312/ = Simaz-

The slope clipping scheme is activated in the model by setting GM_taper_scheme = ’clipping’ in data.gmredi.

Even using slope clipping, it is normally the case that the vertical diffusion term (with coefficient x,K33 = £,52,,,)
is large and must be time-stepped using an implicit procedure (see section on discretisation and code later). Fig. [fig-
mixedlayer] shows the mixed layer depth resulting from a) using the GM scheme with clipping and b) no GM scheme
(horizontal diffusion). The classic result of dramatically reduced mixed layers is evident. Indeed, the deep convection
sites to just one or two points each and are much shallower than we might prefer. This, it turns out, is due to the
over zealous re-stratification due to the bolus transport parameterization. Limiting the slopes also breaks the adiabatic

nature of the GM/Redi parameterization, re-introducing diabatic fluxes in regions where the limiting is in effect.

8.4.1.7 Tapering: Gerdes, Koberle and Willebrand, Clim. Dyn. 1991

The tapering scheme used in /GKW9/] addressed two issues with the clipping method: the introduction of large
vertical fluxes in addition to convective adjustment fluxes is avoided by tapering the GM/Redi slopes back to zero in
low-stratification regions; the adjustment of slopes is replaced by a tapering of the entire GM/Redi tensor. This means
the direction of fluxes is unaffected as the amplitude is scaled.

The scheme inserts a tapering function, f1(5), in front of the GM/Redi tensor:

sy =nin 1. (%)

where Sy,q. is the maximum slope you want allowed. Where the slopes, |\S| < Spaz then f1(S) = 1 and the tensor
is un-tapered but where |\S| > Sp,q. then f1(S) scales down the tensor so that the effective vertical diffusivity term

Hfl(s)|5|2 = Hsfnaz'
The GKW9I1 tapering scheme is activated in the model by setting GM_taper_scheme = ’gkw91’ in data.gmredi.

8.4.1.8 Tapering: Danabasoglu and McWilliams, J. Clim. 1995

The tapering scheme used by followed a similar procedure but used a different tapering function, f;(.5):

A(S) =3 (1 + tanh [S;dS'D

190 Chapter 8. Packages | - Physical Parameterizations

MITgcm Documentation, Release 1.0

where S. = 0.004 is a cut-off slope and S; = 0.001 is a scale over which the slopes are smoothly tapered. Function-
ally, the operates in the same way as the GKW91 scheme but has a substantially lower cut-off, turning off the GM/Redi
SGS parameterization for weaker slopes.

The DM95 tapering scheme is activated in the model by setting GM_taper_scheme = ’dm95’ in data.gmredi.

8.4.1.9 Tapering: Large, Danabasoglu and Doney, JPO 1997

The tapering used in [LDDM?97] is based on the DM95 tapering scheme, but also tapers the scheme with an additional
function of height, f>(z), so that the GM/Redi SGS fluxes are reduced near the surface:

™

Fal2) = % (1+sin(r— -)

where D = L,|S| is a depth-scale and L, = ¢/ f with ¢ = 2 m s:math:"/{-1}. This tapering with height was introduced
to fix some spurious interaction with the mixed-layer KPP parameterization.

The LDDO97 tapering scheme is activated in the model by setting GM_taper_scheme = ’1dd97’ in data.gmredi.

8.4.1.10 Package Reference

<-Name->|Levs|<-parsing code->|<-— Units -—>]<- Tile (max=80c)

GM_VisbK| 1 |SM P M1 Im~2/s [Mixing coefficient from Visbeck etal,
—parameterization

GM_Kux | 15 |UU P 177MR Im~2/s |[K_11 element (U.point, X.dir) of GM-
—Redi tensor

GM_Kvy | 15 |[VV P 176MR Im~2/s |K_22 element (V.point, Y.dir) of GM-
—~Redi tensor

GM_Kuz | 15 |UU 179MR Im~2/s |[K_13 element (U.point, Z.dir) of GM-
—Redi tensor

GM_Kvz [15 |VvV 178MR Im~2/s |[K_23 element (V.point, Z.dir) of GM-
—Redi tensor

GM_Kwx | 15 |UM 181LR Im~2/s |[K_31 element (W.point, X.dir) of GM-
—~Redi tensor

GM_Kwy | 15 |VM 180LR Im~2/s |K_32 element (W.point, Y.dir) of GM-
—Redi tensor

GM_Kwz | 15 |WwM P LR Im~2/s |[K_33 element (W.point, Z.dir) of GM-
—Redi tensor

GM_PsiX | 15 |UU 184LR Im"~2/s |GM Bolus transport stream-function :
—X component

GM_PsiY | 15 |VV 183LR Im~2/s |[GM Bolus transport stream-function : |
Y component

GM_KuzTz| 15 |[UU 186MR |degC.m"3/s |[Redi Off-diagonal Tempetature flux: X
—component

GM_KvzTz| 15 |VV 185MR |degC.m"3/s |[Redi Off-diagonal Tempetature flux: Y
—component

8.4.1.11 Experiments and tutorials that use gmredi

* Global Ocean tutorial, in tutorial_global_oce_latlon verification directory, described in section [sec:eg-global]

 Front Relax experiment, in front_relax verification directory.

¢ Ideal 2D Ocean experiment, in ideal_2D_oce verification directory.

8.4. Ocean Packages

191

MITgcm Documentation, Release 1.0

8.4.2 KPP: Nonlocal K-Profile Parameterization for Vertical Mixing

Authors: Dimitris Menemenlis and Patrick Heimbach

8.4.2.1 Introduction

The nonlocal K-Profile Parameterization (KPP) scheme of /LM D94] unifies the treatment of a variety of unresolved
processes involved in vertical mixing. To consider it as one mixing scheme is, in the view of the authors, somewhat
misleading since it consists of several entities to deal with distinct mixing processes in the ocean’s surface boundary
layer, and the interior:

1. mixing in the interior is goverened by shear instability (modeled as function of the local gradient Richardson
number), internal wave activity (assumed constant), and double-diffusion (not implemented here).

2. aboundary layer depth h or hb1l is determined at each grid point, based on a critical value of turbulent processes
parameterized by a bulk Richardson number;

3. mixing is strongly enhanced in the boundary layer under the stabilizing or destabilizing influence of surface
forcing (buoyancy and momentum) enabling boundary layer properties to penetrate well into the thermocline;
mixing is represented through a polynomial profile whose coefficients are determined subject to several con-
traints;

4. the boundary-layer profile is made to agree with similarity theory of turbulence and is matched, in the asymptotic
sense (function and derivative agree at the boundary), to the interior thus fixing the polynomial coefficients;
matching allows for some fraction of the boundary layer mixing to affect the interior, and vice versa;

5. a “non-local” term 4 or ghat which is independent of the vertical property gradient further enhances mixing
where the water column is unstable

The scheme has been extensively compared to observations (see e.g. [LDDM97]) and is now common in many ocean
models.

The current code originates in the NCAR NCOM 1-D code and was kindly provided by Bill Large and Jan Morzel.
It has been adapted first to the MITgcm vector code and subsequently to the current parallel code. Adjustment were
mainly in conjunction with WRAPPER requirements (domain decomposition and threading capability), to enable
automatic differentiation of tangent linear and adjoint code via TAMC.

The following sections will describe the KPP package configuration and compiling ([sec:pkg:kpp:comp]),
the settings and choices of runtime parameters ([sec:pkg:kpp:runtime]), more detailed description of equa-
tions to which these parameters relate ([sec:pkg:kpp:equations]), and key subroutines where they are used
([sec:pkg:kpp:flowchart]), and diagnostics output of KPP-derived diffusivities, viscosities and boundary-layer/mixed-
layer depths ([sec:pkg:kpp:diagnostics]).

8.4.2.2 KPP configuration and compiling

As with all MITgem packages, KPP can be turned on or off at compile time
* using the packages. conf file by adding kpp to it,
e or using genmake?2 adding —enable=kpp or —disable=kpp switches

* Required packages and CPP options: No additional packages are required, but the MITgcm kernel flag enabling
the penetration of shortwave radiation below the surface layer needs to be set in CPP_OPTIONS. h as follows:
#define SHORTWAVE_HEATING

(see Section [sec:buildingCode]).

Parts of the KPP code can be enabled or disabled at compile time via CPP preprocessor flags. These options are set in
KPP_OPTIONS.h. Table Table 8.4 summarizes them.

192 Chapter 8. Packages | - Physical Parameterizations

MITgcm Documentation, Release 1.0

Table 8.4: CPP flags for KPP

CPP option Description
_KPP_RL

FRUGAL_KPP

KPP_SMOOTH_SHSQ

KPP_SMOOTH_DVSQ

KPP_SMOOTH_DENS

KPP_SMOOTH_VISC

KPP_SMOOTH_DIFF

KPP_ESTIMATE_UREF
INCLUDE_DIAGNOSTICS_INTERFACE_CODE
KPP_GHAT

EXCLUDE_KPP_SHEAR_MIX

8.4.2.3 Run-time parameters

Run-time parameters are set in files data.pkg and data. kpp which are read in kpp_readparms.F. Run-time
parameters may be broken into 3 categories: (i) switching on/off the package at runtime, (ii) required MITgcm flags,
(iii) package flags and parameters.

Enabling the package

The KPP package is switched on at runtime by setting useKPP = .TRUE. indata.pkg.

Required MITgcm flags

The following flags/parameters of the MITgcm dynamical kernel need to be set in conjunction with KPP:

.TRUE. | enable implicit vertical viscosity
.TRUE. | enable implicit vertical diffusion

implicitViscosity
implicitDiffusion

Package flags and parameters

Table 8.5 summarizes the runtime flags that are set in data . pkg, and their default values.

Table 8.5: Runtime flags for KPP

Flag/parameter | default | Description

1/0O related parameters

kpp_freq deltaTClock Recomputation frequency for KPP
fields

kpp_dumpFreq dumpFreq Dump frequency of KPP field snap-
shots

kpp_taveFreq taveFreq Averaging and dump frequency of
KPP fields

KPPmixingMaps .FALSE. include KPP diagnostic maps in
STDOUT

Continued on next page

8.4. Ocean Packages 193

MITgcm Documentation, Release 1.0

Table 8.5 — continued from previous page

Flag/parameter default Description
KPPwriteState .FALSE. write KPP state to file
KPP_ghatUseTotalDiffus .FALSE. if .T. compute non-local term us-
ing
total vertical diffusivity
if .F. use KPP vertical diffusivity
General KPP parameters
minKPPhbl delRc (1) Minimum boundary layer depth
epsilon 0.1 nondimensional extent of the sur-
face layer
vonk 0.4 von Karman constant
dB_dz 5.2E-5572 maximum dB/dz in mixed layer
hMix
concs 98.96
concv 1.8

Boundary layer parameters (S/R bldepth)

Ricr 0.3 critical bulk Richardson number

cekman 0.7 coefficient for Ekman depth

cmonob 1.0 coefficient for Monin-Obukhov
depth

concv 1.8 ratio of interior to entrainment depth
buoyancy frequency

hbf 1.0 fraction of depth to which absorbed
solar radiation contributes to surface
buoyancy forcing

Vtc non-dim. coeff. for velocity scale of

turbulant velocity shear (= function
of concv,concs,epsilon,vonk,Ricr)

Boundary layer mixing parameters (S/R blmix)

cstar proportionality coefficient for non-
10. local transport
cg non-dimensional coefficient for

counter-gradient term (= function
of cstar,vonk,concs,epsilon)

Interior mixing parameters (S/R Ri_iwmix)

Riinfty 0.7 gradient Richardson number limit
for shear instability

BVDQcon -0.2E-4 572 Brunt-Viisald squared

difm0 0.005 m* s! viscosity max. due to shear instabil-
ity

difsO 0.005 m?/s tracer diffusivity max. due to shear
instability

dift0 0.005 m?/s heat diffusivity max. due to shear
instability

difmcon 0.1 viscosity due to convective instabil-
ity

difscon 0.1 tracer diffusivity due to convective
instability

diftcon 0.1 heat diffusivity due to convective in-
stability

Continued on next page
194 Chapter 8. Packages | - Physical Parameterizations

MITgcm Documentation, Release 1.0

Table 8.5 — continued from previous page

Flag/parameter default Description

Rrho0 not used limit for double diffusive density ra-
tio

dsfmax not used maximum diffusivity in case of salt
fingering

8.4.2.4 Equations and key routines

We restrict ourselves to writing out only the essential equations that relate to main processes and parameters mentioned

above. We closely follow the notation of /[LMD94].

KPP_CALC:

Top-level routine.

KPP_MIX:

Intermediate-level routine

BLMIX: Mixing in the boundary layer

The vertical fluxes wx of momentum and tracer properties X is composed of a gradient-flux term (proportional to the
vertical property divergence 0,.X), and a “nonlocal” term -y, that enhances the gradient-flux mixing coefficient K,

wE(d) = —K, (

* Boundary layer mixing profile It is expressed as the product of the boundary layer depth h, a depth-dependent
turbulent velocity scale w, (o) and a non-dimensional shape function G(o)

Kz(0) = hws(0) G(o)

with dimensionless vertical coordinate o = d/h. For details of :math:‘ w_x(sigma)‘ and G (o) we refer to .

* Nonlocal mixing term The nonlocal transport term - is nonzero only for tracers in unstable (convective) forcing
conditions. Thus, depending on the stability parameter ¢ = d/L (with depth d, Monin-Obukhov length scale L)

it has the following form:

In practice, the routine peforms the following tasks:

Vs = Cs w??)h

v = C

1. compute velocity scales at hbl

2. find the interior viscosities and derivatives at hbl

8.4. Ocean Packages

195

MITgcm Documentation, Release 1.0

compute turbulent velocity scales on the interfaces
compute the dimensionless shape functions at the interfaces
compute boundary layer diffusivities at the interfaces

compute nonlocal transport term

N o AW

find diffusivities at kbl-1 grid level

RI_IWMIX: Mixing in the interior

Compute interior viscosity and diffusivity coefficients due to
* shear instability (dependent on a local gradient Richardson number),
¢ to background internal wave activity, and
* to static instability (local Richardson number < 0).

TO BE CONTINUED.

BLDEPTH: Boundary layer depth calculation:

The oceanic planetary boundary layer depth, hb1, is determined as the shallowest depth where the bulk Richardson
number is equal to the critical value, Ricr.

Bulk Richardson numbers are evaluated by computing velocity and buoyancy differences between values at zgrid(kl)
< 0 and surface reference values. In this configuration, the reference values are equal to the values in the surface layer.
When using a very fine vertical grid, these values should be computed as the vertical average of velocity and buoyancy
from the surface down to epsilon*zgrid(kl).

When the bulk Richardson number at k exceeds Ricr, hbl is linearly interpolated between grid levels zgrid(k) and
zgrid(k-1).

The water column and the surface forcing are diagnosed for stable/ustable forcing conditions, and where hbl is relative
to grid points (caseA), so that conditional branches can be avoided in later subroutines.

TO BE CONTINUED.

KPP_CALC_DIFF_T/_S, KPP_CALC_VISC:

Add contribution to net diffusivity/viscosity from KPP diffusivity/viscosity.
TO BE CONTINUED.

KPP_TRANSPORT_T/_S/_PTR:

Add non local KPP transport term (ghat) to diffusive temperature/salinity/passive tracer flux. The nonlocal transport
term is nonzero only for scalars in unstable (convective) forcing conditions.

TO BE CONTINUED.

Implicit time integration

TO BE CONTINUED.

196 Chapter 8. Packages | - Physical Parameterizations

MITgcm Documentation, Release 1.0

Penetration of shortwave radiation

TO BE CONTINUED.

8.4.2.5 Flow chart

!CALLING SEQUENCE:

kpp_calc (TOP LEVEL ROUTINE)
\
| -— statekpp: o compute all EOS/density-related arrays
| o uses S/R FIND_ALPHA, FIND_BETA, FIND_RHO
\
| -— kppmix
| |——— ri_iwmix (compute interior mixing coefficients due to constant
| internal wave activity, static instability,
| and local shear instability).
|
|-—— bldepth (diagnose boundary layer depth)
|
|-—— blmix (compute boundary layer diffusivities)
|
| -—— enhance (enhance diffusivity at interface kbl - 1)
o

Q0000000000000

\
\
\
\
\
\
\
\
\
\
|-— swfrac
o

8.4.2.6 KPP diagnostics

Diagnostics output is available via the diagnostics package (see Section [sec:pkg:diagnostics]). Available output fields
are summarized here:

<-Name->|Levs|grid|<-— Units ——>|<- Tile (max=80c)

KPPviscA| 23 |[SM |m"2/s | KPP vertical eddy viscosity coefficient

KPPdiffS| 23 [SM |m"2/s |[Vertical diffusion coefficient for salt & tracers
KPPdiffT| 23 |SM |m"2/s |[Vertical diffusion coefficient for heat

KPPghat | 23 [SM |s/m"2 [Nonlocal transport coefficient

KPPhbl | 1 |[SM |m | KPP boundary layer depth, bulk Ri criterion
KPPmld | 1 |SM |m |IMixed layer depth, dT=.8degC density criterion
KPPfrac | 1 |sMm | | Short-wave flux fraction penetrating mixing layer

8.4.2.7 Reference experiments

lab_sea:

natl_box:

8.4. Ocean Packages 197

MITgcm Documentation, Release 1.0

8.4.2.8 References
8.4.2.9 Experiments and tutorials that use kpp

 Labrador Sea experiment, in lab_sea verification directory

8.4.3 GGL90: a TKE vertical mixing scheme

(in directory: pkg/ggl90/)

8.4.3.1 Key subroutines, parameters and files

see [GGLI0]

8.4.3.2 Experiments and tutorials that use GGL90

* Vertical mixing verification experiment (vermix/input .ggl90)

8.4.4 OPPS: Ocean Penetrative Plume Scheme

(in directory: pkg/opps/)

8.4.4.1 Key subroutines, parameters and files

See [PR97]

8.4.4.2 Experiments and tutorials that use OPPS

* Vertical mixing verification experiment (vermix/input.opps)

8.4.5 KL10: Vertical Mixing Due to Breaking Internal Waves

(in directory: pkg/kl10/)
Authors: Jody M. Klymak

8.4.5.1 Introduction

The [KL10] parameterization for breaking internal waves is meant to represent mixing in the ocean “interior” due to
convective instability. Many mixing schemes in the presence of unstable stratification simply turn on an arbitrarily
large diffusivity and viscosity in the overturning region. This assumes the fluid completely mixes, which is proba-
bly not a terrible assumption, but it also makes estimating the turbulence dissipation rate in the overturning region
meaningless.

The KL10 scheme overcomes this limitation by estimating the viscosity and diffusivity from a combination of the
Ozmidov relation and the Osborn relation, assuming a turbulent Prandtl number of one. The Ozmidov relation says
that outer scale of turbulence in an overturn will scale with the strength of the turbulence ¢, and the stratification NV, as

198 Chapter 8. Packages | - Physical Parameterizations

MITgcm Documentation, Release 1.0

L3 ~eN73. (8.1)
The Osborn relation relates the strength of the dissipation to the vertical diffusivity as
K, =TeN~2,

where I' =~ (.2 is the mixing ratio of buoyancy flux to thermal dissipation due to the turbulence. Combining the two
gives us

K, ~TL%N.

The ocean turbulence community often approximates the Ozmidov scale by the root-mean-square of the Thorpe dis-
placement, 6, in an overturn /Tho77]. The Thorpe displacement is the distance one would have to move a water parcel
for the water column to be stable, and is readily measured in a measured profile by sorting the profile and tracking
how far each parcel moves during the sorting procedure. This method gives an imperfect estimate of the turbulence,
but it has been found to agree on average over a large range of overturns [WG94][SG94][Mou96].

The algorithm coded here is a slight simplification of the usual Thorpe method for estimating turbulence in overturning
regions. Usually, overturns are identified and NV is averaged over the overturn. Here, instead we estimate

K, (2) = T2 N,(2).
where N;(z) is the local sorted stratification. This saves complexity in the code and adds a slight inaccuracy, but we
don’t believe is biased.
We assume a turbulent Prandtl number of 1, so A, = K.

We also calculate and output a turbulent dissipation from this scheme. We do not simply evaluate the overturns for e
using ([eq:pkg:kl110:Lo]). Instead we compute the vertical shear terms that the viscosity is acting on:

e (G ()

There are straightforward caveats to this approach, covered in [KLI0].
* If your resolution is too low to resolve the breaking internal waves, you won’t have any turbulence.

* If the model resolution is too high, the estimates of €, will start to be exaggerated, particularly if the run in
non-hydrostatic. That is because there will be significant shear at small scales that represents the turbulence
being parameterized in the scheme. At very high resolutions direct numerical simulation or more sophisticated
large-eddy schemes should be used.

* We find that grid cells of approximately 10 to 1 aspect ratio are a good rule of thumb for achieving good
results are usual oceanic scales. For a site like the Hawaiian Ridge, and Luzon Strait, this means 10-m vertical
resolusion and approximately 100-m horizontal. The 10-m resolution can be relaxed if the stratification drops,
and we often WKB-stretch the grid spacing with depth.

» The dissipation estimate is useful for pinpoiting the location of turbulence, but again, is grid size dependent to
some extent, and should be treated with a grain of salt. It will also not include any numerical dissipation such
as you may find with higher order advection schemes.

8.4.5.2 KL10 configuration and compiling

As with all MITgem packages, KL10 can be turned on or off at compile time

* using the packages. conf file by adding k110 to it,

8.4. Ocean Packages 199

MITgcm Documentation, Release 1.0

* or using genmake?2 adding —enable=k110 or ~disable=k110 switches
* Required packages and CPP options: No additional packages are required.
(see Section [sec:buildingCode]).

KL10 has no compile-time options (KL10_OPTIONS.h is empty).

8.4.5.3 Run-time parameters

Run-time parameters are set in files data.pkg and data.k110 which are read in k110_readparms.F. Run-
time parameters may be broken into 3 categories: (i) switching on/off the package at runtime, (ii) required MITgcm
flags, (iii) package flags and parameters.

Enabling the package

The KL10 package is switched on at runtime by setting useKL10 = .TRUE. indata.pkg.

Required MITgcm flags

The following flags/parameters of the MITgcm dynamical kernel need to be set in conjunction with KL.10:

implicitViscosity = .TRUE. | enable implicit vertical viscosity
implicitDiffusion .TRUE. | enable implicit vertical diffusion

Package flags and parameters
Table 8.6 summarizes the runtime flags that are set in data . k110, and their default values.

Table 8.6: KL10 runtime parameters.

Flag/parameter | default Description

KLviscMax 300 m” s Maximum viscosity the scheme will ever give (useful for stability)
KLdumpFreq dumpFreqg | Dump frequency of KL10 field snapshots

KLtaveFreq taveFreq | Averaging and dump frequency of KL10 fields

KLwriteState .FALSE. write KL.10 state to file

8.4.5.4 Equations and key routines

KL10_CALC:

Top-level routine. Calculates viscosity and diffusivity on the grid cell centers. Note that the runtime parameters
viscAz and dif£fKzT act as minimum viscosity and diffusivities. So if there are no overturns (or they are weak)
then these will be returned.

KL10_CALC_VISC:

Calculates viscosity on the W and S grid faces for U and V respectively.

200 Chapter 8. Packages | - Physical Parameterizations

MITgcm Documentation, Release 1.0

KL10_CALC_DIFF:

Calculates the added diffusion from KL10.

8.4.5.5 KL10 diagnostics

Diagnostics output is available via the diagnostics package (see Section [sec:pkg:diagnostics]). Available output fields
are summarized here:

<-Name->|Levs|grid|<-— Units ——>|<- Tile (max=80c)

KLviscAr| Nr [SM |m"2/s |[KL10 vertical eddy viscosity coefficient
KLdiffKr| Nr |[SM |m"2/s |[Vertical diffusion coefficient for salt,
—temperature, & tracers

KLeps | Nr |SM |[m"3/s"3 | Turbulence dissipation estimate.

8.4.5.6 References

Klymak and Legg, 2010, Oc. Modell..

8.4.5.7 Experiments and tutorials that use KL10

* Modified Internal Wave experiment, in internal_wave verification directory

8.4.6 BULK_FORCE: Bulk Formula Package

author: Stephanie Dutkiewicz

Instead of forcing the model with heat and fresh water flux data, this package calculates these fluxes using the changing
sea surface temperature. We need to read in some atmospheric data: air temperature, air humidity, down shortwave
radiation, down longwave radiation, precipitation, wind speed. The current setup also reads in wind stress, but
this can be changed so that the stresses are calculated from the wind speed.

The current setup requires that there is the thermodynamic-seaice package (pkg/thsice, also refered below as seaice) is
also used. It would be useful though to have it also setup to run with some very simple parametrization of the sea ice.

The heat and fresh water fluxes are calculated in bulkf forcing.F called from forward_step.F. These fluxes are used
over open water, fluxes over seaice are recalculated in the sea-ice package. Before the call to bulkf forcing.F we call
bulkf fields_load.F to find the current atmospheric conditions. The only other changes to the model code come from
the initializing and writing diagnostics of these fluxes.

8.4.6.1 subroutine BULKF_FIELDS_LOAD

Here we find the atmospheric data needed for the bulk formula calculations. These are read in at periodic intervals and
values are interpolated to the current time. The data file names come from data.blk. The values that can be read in
are: air temperature, air humidity, precipitation, down solar radiation, down long wave radiation, zonal and meridional
wind speeds, total wind speed, net heat flux, net freshwater forcing, cloud cover, snow fall, zonal and meridional wind
stresses, and SST and SSS used for relaxation terms. Not all these files are necessary or used. For instance cloud cover
and snow fall are not used in the current bulk formula calculation. If total wind speed is not supplied, wind speed is
calculate from the zonal and meridional components. If wind stresses are not read in, then the stresses are calculated
from the wind speed. Net heat flux and net freshwater can be read in and used over open ocean instead of the bulk

8.4. Ocean Packages 201

MITgcm Documentation, Release 1.0

formula calculations (but over seaice the bulkf formula is always used). This is “hardwired” into bulkf forcing and the
“ch” in the variable names suggests that this is “cheating”. SST and SSS need to be read in if there is any relaxation
used.

8.4.6.2 subroutine BULKF_FORCING

In bulkf forcing.F, we calculate heat and fresh water fluxes (and wind stress, if necessary) for each grid cell. First
we determine if the grid cell is open water or seaice and this information is carried by iceornot. There is a provision
here for a different designation if there is snow cover (but currently this does not make any difference). We then call
bulkf formula_lanl. F which provides values for: up long wave radiation, latent and sensible heat fluxes, the derivative
of these three with respect to surface temperature, wind stress, evaporation. Net long wave radiation is calculated from
the combination of the down long wave read in and the up long wave calculated.

We then find the albedo of the surface - with a call to sfc_albedo if there is sea-ice (see the seaice package for
information on the subroutine). If the grid cell is open ocean the albedo is set as 0.1. Note that this is a parameter that
can be used to tune the results. The net short wave radiation is then the down shortwave radiation minus the amount
reflected.

If the wind stress needed to be calculated in bulkf formula_lanl.F, it was calculated to grid cell center points, so in
bulkf forcing.F we regrid to u and v points. We let the model know if it has read in stresses or calculated stresses by
the switch readwindstress which is can be set in data.blk, and defaults to .TRUE..

We then calculate Qnet and EmPmR that will be used as the fluxes over the open ocean. There is a provision for
using runoff. If we are “cheating” and using observed fluxes over the open ocean, then there is a provision here to use
read in Qnet and EmPmR.

The final call is to calculate averages of the terms found in this subroutine.

8.4.6.3 subroutine BULKF_FORMULA_LANL

This is the main program of the package where the heat fluxes and freshwater fluxes over ice and open water are
calculated. Note that this subroutine is also called from the seaice package during the iterations to find the ice surface
temperature.

Latent heat (L) used in this subroutine depends on the state of the surface: vaporization for open water, fusion and
vaporization for ice surfaces. Air temperature is converted from Celsius to Kelvin. If there is no wind speed (us)
given, then the wind speed is calculated from the zonal and meridional components.

We calculate the virtual temperature:
T, = Tair(l + 'qur)

where T, is the air temperature at A7, ¢, is humidity at i, and -y is a constant.

The saturated vapor pressure is calculate (QQ ref):

a L(b—+%—)
Qsat = —€ (Tars
o

where a, b, c are constants, T,.¢ is surface temperature and p, is the surface pressure.

The two values crucial for the bulk formula calculations are the difference between air at sea surface and sea surface
temperature:

AT = Tair — Tsrf + ahr

202 Chapter 8. Packages | - Physical Parameterizations

MITgcm Documentation, Release 1.0

where « is adiabatic lapse rate and hr is the height where the air temperature was taken; and the difference between
the air humidity and the saturated humidity

Aq = Gair — 4sat-
We then calculate the turbulent exchange coefficients following Bryan et al (1996) and the numerical scheme of Hunke

and Lipscombe (1998). We estimate initial values for the exchange coefficients, ¢, cr and ¢, as

_
ln(zref/zrou)

where « is the Von Karman constant, z,.y is a reference height and z;.,,, is a roughness length scale which could be a
function of type of surface, but is here set as a constant. Turbulent scales are:

*

u = Cylls
T = CTAT
"= cqAq

We find the “integrated flux profile” for momentum and stability if there are stable QQ conditions (T > 0) :
wm = 'l/)s =57
and for unstable QQ conditions (Y < 0):

Ym = 2n(0.5(1 4 x)) + In(0.5(1 + x?)) — 2tan~ x + 7/2
Vs = 2n(0.5(1 4 x?))

where

RGZref T* q
T = I S
u*? (To 1/7+qa)

and y = (1 —167)/2,

The coefficients are updated through 5 iterations as:

u
S N § W
TT Tv a0 —)k
Cqg = or

where A = In(hr/zpef).
‘We can then find the bulk formula heat fluxes:

Sensible heat flux:
Qs = PairCp,;, UsCuCT AT
Latent heat flux:
Q1 = pairLuscucsAgq
Up long wave radiation

up __ 4
Qlw - 6O—T‘srf

8.4. Ocean Packages 203

MITgcm Documentation, Release 1.0

where € is emissivity (which can be different for open ocean, ice and snow), o is Stefan-Boltzman constant.

We calculate the derivatives of the three above functions with respect to surface temperature

d
fs = PairCpy;, UsCuCT
T

@ _ paiTLQUScucqc

dr Tfrf
dQyP

llw _ 3
F = 460ts7‘f

- dQyr
And total derivative ddQT" = dc% + % + —3%‘“.

If we do not read in the wind stress, it is calculated here.

8.4.6.4 Initializing subroutines

bulkf_init.F: Set bulkf variables to zero.
bulkf_readparms.F: Reads data.blk

8.4.6.5 Diagnostic subroutines

bulkf_ave.F: Keeps track of means of the bulkf variables
bulkf_diags.F: Finds averages and writes out diagnostics
8.4.6.6 Common Blocks

BULKF . h: BULKF Variables, data file names, and logicals readwindstress and readsurface
BULKF_DIAGS.h: matrices for diagnostics: averages of fields from bulkf diags.F

BULKF_ICE_CONSTANTS. h: all the parameters needed by the ice model and in the bulkf formula calculations.
8.4.6.7 Input file DATA.ICE
We read in the file names of atmospheric data used in the bulk formula calculations. Here we can also set the logicals:

readwindstress if we read in the wind stress rather than calculate it from the wind speed; and readsurface to read in
the surface temperature and salinity if these will be used as part of a relaxing term.

8.4.6.8 Important Notes

1. heat fluxes have different signs in the ocean and ice models.

2. StartIceModel must be changed in data.ice: 1 (if starting from no ice), 0 (if using pickup.ic file).

204 Chapter 8. Packages | - Physical Parameterizations

MITgcm Documentation, Release 1.0

8.4.6.9 References
Bryan F.O., B.G Kauffman, W.G. Large, P.R. Gent, 1996: The NCAR CSM flux coupler. Technical note TN-425+STR,
NCAR.

Hunke, E.C and W.H. Lipscomb, circa 2001: CICE: the Los Alamos Sea Ice Model Documentation and Software
User’s Manual. LACC-98-16v.2. (note: this documentation is no longer available as CICE has progressed to a very
different version 3)

8.4.6.10 Experiments and tutorials that use bulk_force

* Global ocean experiment in global_ocean.cs32x15 verification directory, input from input.thsice directory.

8.4.7 EXF: The external forcing package

Authors: Patrick Heimbach and Dimitris Menemenlis

8.4.7.1 Introduction

The external forcing package, in conjunction with the calendar package (cal), enables the handling of real-time (or
“model-time”) forcing fields of differing temporal forcing patterns. It comprises climatological restoring and re-
laxation. Bulk formulae are implemented to convert atmospheric fields to surface fluxes. An interpolation routine
provides on-the-fly interpolation of forcing fields an arbitrary grid onto the model grid.

CPP options enable or disable different aspects of the package (Section [sec:pkg:exf:config]). Runtime options, flags,
filenames and field-related dates/times are set in data.exf (Section [sec:pkg:exf:runtime]). A description of key
subroutines is given in Section [sec:pkg:exf:subroutines]. Input fields, units and sign conventions are summarized in
Section [sec:pkg:exf:fields:sub:units], and available diagnostics output is listed in Section [sec:pkg:exf:diagnostics].

8.4.7.2 EXF configuration, compiling & running

Compile-time options

As with all MITgem packages, EXF can be turned on or off at compile time
* using the packages.conf file by adding exf to it,
* or using genmake?2 adding —~enable=exf or ~disable=exf switches

* required packages and CPP options: EXF requires the calendar package cal to be enabled; no additional CPP
options are required.

(see Section [sec:buildingCode]).

Parts of the EXF code can be enabled or disabled at compile time via CPP preprocessor flags. These options are set in
either EXF_OPTIONS.h orin ECCO_CPPOPTIONS.h. Table 8.7 summarizes these options.

8.4. Ocean Packages 205

MITgcm Documentation, Release 1.0

Table 8.7: EXF CPP options

CPP option Description

EXF_VERBOSE verbose mode (recommended only for testing)
ALLOW_ATM_TEMP compute heat/freshwater fluxes from atmos. state input
ALLOW_ATM_WIND compute wind stress from wind speed input
ALLOW_BULKFORMULAE is used if ALLOW_ATM_TEMP or ALLOW_ATM_WIND is enabled
EXF_READ_EVAP read evaporation instead of computing it

ALLOW_RUNOFF read time-constant river/glacier run-off field
ALLOW_DOWNWARD_RADIATION | compute net from downward or downward from net radiation
USE_EXF_INTERPOLATION enable on-the-fly bilinear or bicubic interpolation of input fields

used in conjunction with relaxation to prescribed (climatological) fields
ALLOW_CLIMSST_RELAXATION | relaxation to 2-D SST climatology
ALLOW_CLIMSSS_RELAXATION | relaxation to 2-D SSS climatology
these are set outside of EXF in CPP_OPTIONS.h
SHORTWAVE_HEATING enable shortwave radiation
ATMOSPHERIC_LOADING enable surface pressure forcing

8.4.7.3 Run-time parameters

Run-time parameters are set in files data.pkg and data.exf which is read in exf_readparms.F. Run-time
parameters may be broken into 3 categories: (i) switching on/off the package at runtime, (ii) general flags and param-
eters, and (iii) attributes for each forcing and climatological field.

Enabling the package

A package is switched on/off at runtime by setting (e.g. for EXF) useEXF = .TRUE. indata.pkg.

General flags and parameters

Table 8.8: EXF runtime options

Flag/parameter default Description

useExfCheckRange .TRUE. check range of input fields and stop if out of range

useExfYearlyFields .FALSE. append current year postfix of form _YYYY on filename

twoDigitYear .FALSE. instead of appending _YYYY append YY

repeatPeriod 0.0 > 0: cycle through all input fields at the same period (in seconds)
= 0: use period assigned to each field

exf_offset_atemp 0.0 set to 273.16 to convert from deg. Kelvin (assumed input) to Celsius

windstressmax 2.0 max. allowed wind stress N m~

exf_albedo 0.1 surface albedo used to compute downward vs. net radiative fluxes

climtempfreeze -1.9 7

ocean_emissivity longwave ocean-surface emissivity

ice_emissivity longwave seaice emissivity

Snow_emissivity longwave snow emissivity

exf_iceCd 1.63E-3 drag coefficient over sea-ice

exf_iceCe 1.63E-3 evaporation transfer coeff. over sea-ice

exf_iceCh 1.63E-3 sensible heat transfer coeff. over sea-ice

exf_scal_BulkCdn 1.0 overall scaling of neutral drag coeff.

Continued on next page

206 Chapter 8. Packages | - Physical Parameterizations

MITgcm Documentation, Release 1.0

Table 8.8 — continued from previous page

Flag/parameter default Description

useStabilityFct_overlce | .FALSE. compute turbulent transfer coeff. over sea-ice
readStressOnAgrid .FALSE. read wind-streess located on model-grid, A-grid point
readStressOnCgrid .FALSE. read wind-streess located on model-grid, C-grid point
useRelativeWind .FALSE. subtract [U/V]VEL or [U/VICE from U/V]WIND before computing [U/V]STRESS
zref 10.0 reference height

hu 10.0 height of mean wind

ht 2.0 height of mean temperature and rel. humidity

umin 0.5 minimum absolute wind speed for computing Cd
atmrho 1.2 mean atmospheric density [kg/m”3]

atmcp 1005.0 mean atmospheric specific heat [J/kg/K]

cdrag_[n] 77? n = 1,2,3; parameters for drag coeff. function
cstanton_[n] 777 n = 1,2; parameters for Stanton number function
cdalton m parameter for Dalton number function

flamb 2500000.0 latent heat of evaporation [J/kg]

flami 334000.0 latent heat of melting of pure ice [J/kg]

zolmin -100.0 minimum stability parameter

cvapor_fac 640380.0

cvapor_exp 5107.4

cvapor_fac_ice 11637800.0

cvapor_fac_ice 5897.8

humid_fac 0.606 parameter for virtual temperature calculation
gamma_blk 0.010 adiabatic lapse rate

saltsat 0.980 reduction of saturation vapor pressure over salt-water
psim_fac 5.0

exf_monFreq monitorFreq | output frequency [s]

exf_iprec 32 precision of input fields (32-bit or 64-bit)

exf_yftype ‘RL” precision of arrays (‘RL’ vs. ‘RS’)

Field attributes

All EXF fields are listed in Section [sec:pkg:exf:fields:sub:units]. Each field has a number of attributes which can be
customized. They are summarized in Table [tab:pkg:exf:runtime:sub:attributes]. To obtain an attribute for a specific
field, e.g. uwind prepend the field name to the listed attribute, e.g. for attribute period this yields uwindperiod:

field & attribute — parameter

e.g. uwind &

period — uwindperiod

8.4. Ocean Packages

207

MITgcm Documentation, Release 1.0

Table 8.9: EXF runtime attributes Note there is one exception for the
default of atempconst = celsius2K =273.16

attribute Default Description
field file < filename; if left empty no file will be read; const will be used
instead
field const 0.0 constant that will be used if no file is read
field startdatel 0.0 format: YYYYMMDD; start year (YY YY), month (MM), day (YY)
of field to determine record number
field startdate?2 0.0 format: HHMMS S; start hour (HH), minute (MM), second(SS)
of field to determine record number
field period 0.0 interval in seconds between two records
exf_inscal_field optional rescaling of input fields to comply with EXF units
exf_outscal_field optional rescaling of EXF fields when mapped onto MITgcm fields
used in conjunction with EXF_USE_INTERPOLATION
field _1on0 xgOrigin+delX/ | starting longitude of input
2
field _lon_inc delX increment in longitude of input
field _1at0 ygOrigin+delY/ | starting latitude of input
2
field _lat_inc dely increment in latitude of input
field _nlon Nx number of grid points in longitude of input
field _nlat Ny number of grid points in longitude of input

Example configuration

The following block is taken from the data.exf file of the verification experiment global_with_exf/. It
defines attributes for the heat flux variable hf 1ux:

hfluxfile = 'ncep_gnet.bin',
hfluxstartdatel = 19920101,
hfluxstartdate2 = 000000,

hfluxperiod = 2592000.0,
hflux_lon0 = 2
hflux_lon_inc = 4
hflux_1latO0 = -78
hflux_lat_inc = 39x4
hflux_nlon = 90
hflux_nlat = 40

EXF will read a file of name 'ncep_gnet.bin’. Its first record represents January 1st, 1992 at 00:00 UTC. Next record
is 2592000 seconds (or 30 days) later. Note that the first record read and used by the EXF package corresponds to
the value ’startDatel’ set in data.cal. Therefore if you want to start the EXF forcing from later in the ncep_gnet.bin’
file, it suffices to specify startDatel in data.cal as a date later than 19920101 (for example, startDatel = 19940101,
for starting January 1st, 1994). For this to work, 'ncep_qgnet.bin’ must have at least 2 years of data because in this
configuration EXF will read 2 years into the file to find the 1994 starting value. Interpolation on-the-fly is used (in
the present case trivially on the same grid, but included nevertheless for illustration), and input field grid starting
coordinates and increments are supplied as well.

8.4.7.4 EXF bulk formulae

T.B.D. (cross-ref. to parameter list table)

208 Chapter 8. Packages | - Physical Parameterizations

MITgcm Documentation, Release 1.0

8.4.7.5 EXF input fields and units

The following list is taken from the header file EXF_FIELDS.h. It comprises all EXF input fields.

Output fields which EXF provides to the MITgcm are fields fu, fv, Qnet, Qsw, EmPmR, and pload. They are defined
in FFIELDS.h.

O
c |

c field Description

c |
O
c ustress :: Zonal surface wind stress in N/m"2

c | > 0 for increase in uVel, which is west to

c | east for cartesian and spherical polar grids

c | Typical range: -0.5 < ustress < 0.5

c | Southwest C-grid U point

c | Input field
O
c vstress :: Meridional surface wind stress in N/m"2

c | > 0 for increase in vVel, which is south to

c | north for cartesian and spherical polar grids

c | Typical range: -0.5 < vstress < 0.5

c | Southwest C-grid V point

c | Input field
O
c hs sensible heat flux into ocean in W/m"2

c | > 0 for increase in theta (ocean warming)
O
c hl :: latent heat flux into ocean in W/m"2

c | > 0 for increase in theta (ocean warming)
O
c hflux :: Net upward surface heat flux in W/m"2

c | (including shortwave)

c | hflux = latent + sensible + lwflux + swflux

c | > 0 for decrease in theta (ocean cooling)

c | Typical range: -250 < hflux < 600

c | Southwest C-grid tracer point

c | Input field
O
c sflux :: Net upward freshwater flux in m/s

c | sflux = evap - precip - runoff

c | > 0 for increase in salt (ocean salinity)

c | Typical range: -le-7 < sflux < le-7

c | Southwest C-grid tracer point

c | Input field

o
c swflux :: Net upward shortwave radiation in W/m"2

c | swflux = - (swdown - ice and snow absorption - reflected)
c | > 0 for decrease in theta (ocean cooling)

c | Typical range: -350 < swflux < 0

c | Southwest C-grid tracer point

c | Input field
O
c uwind :: Surface (10-m) zonal wind velocity in m/s

c | > 0 for increase in uVel, which is west to

c | east for cartesian and spherical polar grids

c | Typical range: -10 < uwind < 10

(continues on next page)

8.4. Ocean Packages 209

MITgcm Documentation, Release 1.0

(continued from previous page)

c | Southwest C-grid U point

c | Input or input/output field
e
c vwind :: Surface (10-m) meridional wind velocity in m/s

c | > 0 for increase in vVel, which is south to

c | north for cartesian and spherical polar grids

c | Typical range: -10 < vwind < 10

c | Southwest C-grid V point

c | Input or input/output field

O
c wspeed :: Surface (10-m) wind speed in m/s

c | >= 0 sqgrt (u"2+v”"2)

c | Typical range: 0 < wspeed < 10

c | Input or input/output field

o
c atemp :: Surface (2-m) air temperature in deg K

c | Typical range: 200 < atemp < 300

c | Southwest C-grid tracer point

c | Input or input/output field
e
c agh :: Surface (2m) specific humidity in kg/kg

c | Typical range: 0 < agh < 0.02

c | Southwest C-grid tracer point

c | Input or input/output field
o~
c lwflux :: Net upward longwave radiation in W/m"2

c | lwflux = - (lwdown - ice and snow absorption - emitted)
c | > 0 for decrease in theta (ocean cooling)

c | Typical range: -20 < lwflux < 170

c | Southwest C-grid tracer point

c | Input field
O
c evap :: Evaporation in m/s

c | > 0 for increase in salt (ocean salinity)

c | Typical range: 0 < evap < 2.5e-7

c | Southwest C-grid tracer point

c | Input, input/output, or output field
O
c precip :: Precipitation in m/s

c | > 0 for decrease in salt (ocean salinity)

c | Typical range: 0 < precip < 5e-7

c | Southwest C-grid tracer point

c | Input or input/output field
O
c snowprecip :: snow in m/s

c | > 0 for decrease in salt (ocean salinity)

c | Typical range: 0 < precip < 5e-7

c | Input or input/output field
e
c runoff :: River and glacier runoff in m/s

c | > 0 for decrease in salt (ocean salinity)

c | Typical range: 0 < runoff < 2?2?2727

c | Southwest C-grid tracer point

c | Input or input/output field

c | 'l WATCH OUT: Default exf_ inscal_runoff !!!

c | "1 in exf_readparms.F is not 1.0 [
O

(continues on next page)

210 Chapter 8. Packages | - Physical Parameterizations

MITgcm Documentation, Release 1.0

(continued from previous page)

swdown :: Downward shortwave radiation in W/m"2

> 0 for increase in theta (ocean warming)
Typical range: 0 < swdown < 450
Southwest C-grid tracer point
Input/output field

Q0 aQ

Q

lwdown :: Downward longwave radiation in W/m"2

> 0 for increase in theta (ocean warming)
Typical range: 50 < lwdown < 450
Southwest C-grid tracer point
Input/output field

Q0 aQ

Q

apressure :: Atmospheric pressure field in N/m"2

> 0 for 2727272

Typical range: ??7?7? < apressure < 2?7727
Southwest C-grid tracer point

Input field

Q00 aQ

8.4.7.6 Key subroutines

Top-level routine: exf_getforcing.F

!CALLING SEQUENCE:

exf_getforcing (TOP LEVEL ROUTINE)
\
|-— exf_getclim (get climatological fields used e.g. for relax.)
| | -——— exf_set_climsst (relax. to 2-D SST field)
| | -——— exf_set_climsss (relax. to 2-D SSS field)
\ o
\
|-— exf_getffields <- this one does almost everything
| | 1. reads in fields, either flux or atmos. state,
depending on CPP options (for each variable two fields
consecutive in time are read in and interpolated onto
current time step).
2. If forcing is atmos. state and control is atmos. state,

|
|
|
|
|
| (atemp, agh, precip, swflux, swdown, uwind, vwind).
| If forcing and control are fluxes, then

| controls are added later.

o

exf_radiation

| Compute net or downwelling radiative fluxes via
| Stefan-Boltzmann law in case only one is known.
o

|—— exf_wind

\ | Computes wind speed and stresses, if required.

| e}

\

|-— exf_bulkformulae

| | Compute air-sea buoyancy fluxes from

| | atmospheric state following Large and Pond, JPO, 1981/82

Q0000000000000 0000000000000an

then the control variable anomalies are read here via ctrl_get_gen

(continues on next page)

8.4. Ocean Packages

211

MITgcm Documentation, Release 1.0

(continued from previous page)

| o

\

|-— < hflux is sum of sensible, latent, longwave rad. >

|-— < sflux is sum of evap. minus precip. minus runoff >

\

| -— exf_getsurfacefluxes

| If forcing and control is flux, then the

| control vector anomalies are read here via ctrl_get_gen
| (hflux, sflux, ustress, vstress)

|-— < update tile edges here >

| -— exf_check_range

\ | Check whether read fields are within assumed range
| (may capture mismatches in units)

| o

|-— < add shortwave to hflux for diagnostics >

|-— exf_diagnostics_fill
| | Do EXF-related diagnostics output here.
| o

|-—— exf_mapfields

| | Forcing fields from exf package are mapped onto
| mitgcm forcing arrays.

| Mapping enables a runtime rescaling of fields
o

a0 o000 000000000000000000a0n

Radiation calculation: exf_ radiation.F
Wind speed and stress calculation: exf_wind.F
Bulk formula: exf_bulkformulae.F
Generic I/0: exf_set_gen.F

Interpolation: exf_interp.F

Header routines

8.4.7.7 EXF diagnostics

Diagnostics output is available via the diagnostics package (see Section [sec:pkg:diagnostics]). Available output fields
are summarized below.

————————— e A s

<-Name->|Levs|grid|<-—- Units ——>[<- Tile (max=80c)
————————— e e M

EXFhs | 1 | SM | W/m"2 | Sensible heat flux into ocean, >0 increases,,
—theta

EXFhl | 1 | SM | W/m"2 | Latent heat flux into ocean, >0 increases theta
EXFlwnet | 1 | SM | W/m"2 | Net upward longwave radiation, >0 decreases,,
—theta

EXFswnet | 1 | SM | W/m"2 | Net upward shortwave radiation, >0 decreases_
—theta

(continues on next page)

212 Chapter 8. Packages | - Physical Parameterizations

MITgcm Documentation, Release 1.0

(continued from previous page)

EXFlwdn | 1 | SM | W/m"2 | Downward longwave radiation, >0 increases theta
EXFswdn | 1 | SM | W/m"2 | Downward shortwave radiation, >0 increases theta
EXFgnet | 1 | SM | W/m"2 | Net upward heat flux (turb+rad), >0 decreases
—theta

EXFtaux | 1 | SU | N/m"2 | zonal surface wind stress, >0 increases uVel
EXFtauy | 1 | SV | N/m"2 | meridional surface wind stress, >0 increases,
—vVel

EXFuwind| 1 | SM | m/s | zonal 10-m wind speed, >0 increases uVel
EXFvwind | 1 | SM | m/s | meridional 10-m wind speed, >0 increases uVel
EXFwspee | 1 | SM | m/s | 10-m wind speed modulus (>= 0)

EXFatemp | 1 | SM | degk | surface (2-m) air temperature

EXFagh | 1 | SM | kg/kg | surface (2-m) specific humidity

EXFevap | 1 | SM | m/s | evaporation, > 0 increases salinity

EXFpreci | 1 | SM | m/s | evaporation, > 0 decreases salinity

EXFsnow | 1 | SM | m/s | snow precipitation, > 0 decreases salinity
EXFempmr | 1 | SM | m/s | net upward freshwater flux, > 0 increases,
—salinity

EXFpress | 1 | SM | N/m"2 | atmospheric pressure field

8.4.7.8 References
8.4.7.9 Experiments and tutorials that use exf

* Global Ocean experiment, in global_with_exf verification directory

e Labrador Sea experiment, in lab_sea verification directory

8.4.8 CAL: The calendar package

Authors: Christian Eckert and Patrick Heimbach

This calendar tool was originally intended to enable the use of absolute dates (Gregorian Calendar dates) in MITgcm.
There is, however, a fair number of routines that can be used independently of the main MITgcm executable. After
some minor modifications the whole package can be used either as a stand-alone calendar or in connection with any
dynamical model that needs calendar dates. Some straightforward extensions are still pending e.g. the availability of
the Julian Calendar, to be able to resolve fractions of a second, and to have a time- step that is longer than one day.

8.4.8.1 Basic assumptions for the calendar tool

It is assumed that the SMALLEST TIME INTERVAL to be resolved is ONE SECOND.

Further assumptions are that there is an INTEGER NUMBER OF MODEL STEPS EACH DAY, and that AT LEAST
ONE STEP EACH DAY is made.

Not each individual routine depends on these assumptions; there are only a few places where they enter.

8.4.8.2 Format of calendar dates

In this calendar tool a complete date specification is defined as the following integer array:

8.4. Ocean Packages 213

MITgcm Documentation, Release 1.0

leap_year is either equal to 1 (normal year)
or equal to 2 (leap year)

c integer date (4)

c

c (yyyymmdd, hhmmss, leap_year, dayofweek)

c

c date (1) = yyyymmdd <-— Year-Month-Day

c date (2) = hhmmss <-— Hours-Minutes—-Seconds
c date (3) = leap_year <-- Leap Year/No Leap Year
c date (4) = dayofweek <-— Day of the Week

c

c

c

c

c

dayofweek has a range of 1 to 7.

In case the Gregorian Calendar is used, the first day of the week is Friday, since day of the Gregorian Calendar was
Friday, 15 Oct. 1582. As a date array this date would be specified as

c refdate (1) = 15821015
c refdate (2) = 0
] refdate (3) = 1
c refdate (4) = 1

8.4.8.3 Calendar dates and time intervals

Subtracting calendar dates yields time intervals. Time intervals have the following format:

c integer datediff (4)

c

c datediff (1) = # Days
c datediff (2) = hhmmss
c datediff (3) = 0
c datediff (4) = -1

Such time intervals can be added to or can be subtracted from calendar dates. Time intervals can be added to and be
subtracted from each other.

8.4.8.4 Using the calendar together with MITgcm
Each routine has as an argument the thread number that it is belonging to, even if this number is not used in the routine
itself.

In order to include the calendar tool into the MITgcm setup the MITgecm subroutine “initialise.F” or the routine
“initilise_fixed.F”, depending on the MITgcm release, has to be modified in the following way:

#ifdef ALLOW_CALENDAR

C—- Initialise the calendar package.

#ifdef USE_CAIL NENDITER

CALL cal_Init(
startTime,
endTime,
deltaTclock,
nliterO,
nEndIter,
nTimeSteps,
myThid

Q0000000000

HoH H H H

(continues on next page)

214 Chapter 8. Packages | - Physical Parameterizations

MITgcm Documentation, Release 1.0

(continued from previous page)

&)
#else
CALL cal_1Init (

I
I
I
I
I
I
&
£

#endi
_BARRIER
#endif

Q0000000000 0a0a0

startTime,
endTime,
deltaTclock,
nIterO,
nTimeSteps,
myThid

It is useful to have the CPP flag ALLOW_CALENDAR in order to switch from the usual MITgcm setup to the one
that includes the calendar tool. The CPP flag USE_CAL_NENDITER has been introduced in order to enable the use
of the calendar for MITgcm releases earlier than checkpoint 25 which do not have the global variable *nEndlIter*.

8.4.8.5 The individual calendars

Simple model calendar:

This calendar can be used by defining

c TheCalendar="model'

in the calendar’s data file “data.cal”.

In this case a year is assumed to have 360 days. The model year is divided into 12 months with 30 days each.

Gregorian Calendar:

This calendar can be used by defining

c TheCalendar='"'gregorian'

in the calendar’s data file “data.cal”.

8.4.8.6 Short routine description

o cal_Init -

o cal_Set -

o cal_GetDhate -

o cal_FullDate -

o cal_TIsLeap -

Q0000000000000

Initialise the calendar. This is the interface
to MITgcm.

Sets the calendar according to the user
specifications.

Given the model's current timestep or the
model's current time return the corresponding

calendar date.

Complete a date specification (leap year and
day of the week).

Determine whether a given year is a leap year.

(continues on next page)

8.4. Ocean Packages

215

MITgcm Documentation, Release 1.0

(continued from previous page)

o0 o000 00a000a0aQ0

cal_TimePassed

cal_AddTime

cal_TimelInterval

cal_SubDates

cal_ConvDate

cal_CopyDate

cal_CompDates

cal_ToSeconds

cal_WeekDay

cal_NumInts

cal_StepsPerDay

cal_DaysPerMonth

cal_MonthsPerYear

cal_StepsForDay

cal_DaysForMonth

cal_MonthsForYear

Determine the time passed between two dates.

Add a time interval either to a time interval
or to a date.

Given a time interval return the corresponding
date array.

Determine the time interval between two dates
or between two time intervals.

Decompose a date array or a time interval
array into its components.

Copy a date array or a time interval array to
another array.

Compare two calendar dates or time intervals.

Given a time interval array return the number
of seconds.

Return the weekday as a string given the
calendar date.

Return the number of time intervals between two
given dates.

Given an iteration number or the current
integration time return the number of time
steps to integrate in the current calendar day.

Given an iteration number or the current
integration time return the number of days
to integrate in this calendar month.

Given an iteration number or the current
integration time return the number of months
to integrate in the current calendar year.

Given the integration day return the number
of steps to be integrated, the first step,
and the last step in the day specified. The
first and the last step refer to the total
number of steps (1, ... , cal_IntSteps).

Given the integration month return the number
of days to be integrated, the first day,

and the last day in the month specified. The
first and the last day refer to the total
number of steps (1, ... , cal_IntDays).

Given the integration year return the number
of months to be integrated, the first month,
and the last month in the year specified. The
first and the last step refer to the total
number of steps (1, ... , cal_IntMonths).

(continues on next page)

216

Chapter 8. Packages | - Physical Parameterizations

MITgcm Documentation, Release 1.0

(continued from previous page)

o cal_Intsteps

o cal_IntDays

o cal_IntMonths

o cal_IntYears

o cal_nStepDay

o cal_CheckDate

o cal_PrintError

o cal_PrintDate

o cal_TimeStamp

a0 0000000000000

o cal_Summary

Return the number of calendar years that are
affected by the current integration.

Return the number of calendar days that are
affected by the current integration.

Return the number of calendar months that are
affected by the current integration.

Return the number of calendar years that are
affected by the current integration.

Return the number of time steps that can be
performed during one calendar day.

Do some simple checks on a date array or on a
time interval array.

Print error messages according to the flags
raised by the calendar routines.

Print a date array in some format suitable for
MITgcm's protocol output.

Given the time and the iteration number return
the date and print all the above numbers.

List all the setttings of the calendar tool.

8.4.8.7 Experiments and tutorials that use cal

* Global ocean experiment in global_with_exf verification directory.

» Labrador Sea experiment in lab_sea verification directory.

8.5 Atmosphere Packages

8.5.1 Atmospheric Intermediate Physics: AIM

Note: The folowing document below describes the aim_v2 3 package that is based on the version v23 of the SPEEDY

code ().

8.5.1.1 Key subroutines, parameters and files

8.5.1.2 AIM Diagnostics

<-Name->|Levs|<-parsing code->|<-—- Units ——>|<- Tile (max=80c)

DIABT | 5 |SM ML

from Diabatic Processes

|[K/s |[Pot. Temp. Tendency (Mass-Weighted)

(continues on next page)

8.5. Atmosphere Packages

217

MITgcm Documentation, Release 1.0

(continued from previous page)

DIABQ | 5 |SM ML lg/kg/s
—from Diabatic Processes

RADSW | 5 | SM ML |[K/s
—Radiation (TT_RSW)

RADLW | 5 |SM ML |K/s
—Radiation (TT_RLW)

DTCONV | 5 | SM MR |[K/s
—Convection (TT_CNV)

TURBT | 5 | SM ML |[K/s
—Turbulence in PBL (TT_PBL)

DTLS | 5 |SM ML |[K/s
—scale condens. (TT_LSC)

DQCONV | 5 |SM MR lg/kg/s
—Convection (QT_CNV)

TURBQ | 5 |SM ML lg/kg/s
—Turbulence in PBL (QT_PBL)

DQLS | 5 |SM ML lg/kg/s
—Scale Condens. (QT_LSC)

TSR | 1 |sSM P Ul [W/m"2
— (+=dw)

OLR | 1 |SM P Ul [W/m"2
RADSWG | 1 |sSM P L1 [W/m"2
— (+=dw)

RADLWG | 1 |SM L1 [W/m"2
— (+=up)

HFLUX | 1 |SM L1 [W/m"2
EVAP | 1 |SM L1 lg/m"2/s
PRECON | 1 |SM P L1l lg/m"2/s
PRECLS | 1 |sM M1 lg/m"2/s
CLDFRC | 1 |SM P M1 [0-1
CLDPRS | 1 |SM PCl67M1 [0-1
CLDMAS | 5 |SM P LL |kg/m~2/s
DRAG | 5 |SM P LL lkg/m"2/s
WINDS | 1 |SM P L1l Im/s

TS | 1 |SM Ll K

0s | 1 |sM P Ll lg/kg
ENPREC | 1 |SM M1 |W/m"2
— (snow, rain Temp)

ALBVISDF | 1 |SM P L1 |0-1
DWNLWG | 1 |SM P L1 [W/m"2
—at the Ground (+=dw)

SWCLR | 5 | SM ML |[K/s
—Shortwave Radiation

LWCLR | 5 | SM ML |[K/s
—Longwave Radiation

TSRCLR | 1 |SM P Ul |W/m"2
—Radiation (+=dw)

OLRCLR | 1 |sSM P Ul [W/m"2
—Radiation (+=up)

SWGCLR | 1 |sM P Ll [W/m"2
—the Ground (+=dw)

LWGCLR | 1 |SM L1 |W/m"2
—the Ground (+=up)

UFLUX [1 |UM 184L1 IN/m"2
VFLUX | 1 |VM 183L1 IN/m"2
—2)

DTSIMPL | 1 |SM P L1 K

|Spec.Humid. Tendency (Mass-Weighted),,

| Temperature Tendency due to Shortwave

|Temperature Tendency due to Longwave

—

|Temperature Tendency due to

[

| Temperature Tendency due to,
| Temperature Tendency due to Large-
|Spec. Humidity Tendency due to,

|Spec. Humidity Tendency due to,

|Spec. Humidity Tendency due to Large-—
|Top-of—-atm. net Shortwave Radiation,,
|Outgoing Longwave Radiation (+=up)
|[Net Shortwave Radiation at the Ground
|[Net Longwave Radiation at the Ground
|Sensible Heat Flux (+=up)

|Surface Evaporation (g/m2/s)
|Convective Precipitation (g/m2/s)
|Large Scale Precipitation (g/m2/s)
|Total Cloud Fraction (0-1)

[Cloud Top Pressure (normalized)
|[Cloud-base Mass Flux (kg/m"2/s)
|Surface Drag Coefficient (kg/m"2/s)
|Surface Wind Speed (m/s)

|near Surface Air Temperature (K)

|near Surface Specific Humidity (g/kg)
|[Energy flux associated with precip.

|Surface Albedo (Visible band) (0-1)
|[Downward Component of Longwave Flux,,

|[Clear Sky Temp. Tendency due to_,
|[Clear Sky Temp. Tendency due to_,

|[Clear Sky Top-of-atm. net Shortwave,
[Clear Sky Outgoing Longwave
|[Clear Sky Net Shortwave Radiation at,,
|[Clear Sky Net Longwave

Radiation at

(N/m”2)
(N/m”

| Zonal Wind Surface Stress
|[Meridional Wind Surface Stress

[Surf. Temp Change after 1 implicit,,

—time step

(continues on next page)

218

Chapter 8. Packages | - Physical Parameterizations

MITgcm Documentation, Release 1.0

(continued from previous page)

|

8.5.1.3 Experiments and tutorials that use aim

* Global atmosphere experiment in aim.51_cs verification directory.

8.5.2 Land package
8.5.2.1 Introduction
This package provides a simple land model based on Rong Zhang [e-mail:roz@ gfdl.noaa.gov] 2 layers model (see

documentation below).

It is primarily implemented for AIM (_v23) atmospheric physics but could be adapted to work with a different atmo-
spheric physics. Two subroutines (aim_aim2land.F aim_land2aim.F in pkg/aim_v23) are used as interface with AIM
physics.

Number of layers is a parameter (land_nLev in LAND_SIZE.h) and can be changed.
Note on Land Model date: June 1999 author: Rong Zhang

8.5.2.2 Equations and Key Parameters

This is a simple 2-layer land model. The top layer depth z1 = 0.1m, the second layer depth 22 = 4m.

Let T,1, T42 be the temperature of each layer, W; W5 be the soil moisture of each layer. The field capacity fi, fo are
the maximum water amount in each layer, so W is the ratio of available water to field capacity. f; = vz;,v = 0.24 is
the field capapcity per meter soil, so f; = 0.024m, fo = 0.96m.

The land temperature is determined by total surface downward heat flux F,

dT1 Tl_T2

O1—2 =F -\ 92

AT (21 + 22)/2
G dTys _ | Ty — Ty

dt (Zl +ZQ)/2

here C', Cy are the heat capacity of each layer , A‘isthethermalconductivity,: math :lambda =0.42Wm*"{-1}K*{-
1}.

Ch = CuWiy + Cy

C2 = CwW2’7 + Cs

Cy,Cy are the heat capacity of water and dry soil respectively. C,, = 4.2 x 106Jm™3K~1,Cy = 1.13 x
106 m=3K 1.

The soil moisture is determined by precipitation P(m/s),surface evaporation E(m/s) and runoff R(m/s).

AW _P—E—R+W2—W1
dt N f1 T

7 = 2 days is the time constant for diffusion of moisture between layers.

AWy _ fL Wi —Ws
dt f2 T

8.5. Atmosphere Packages 219

MITgcm Documentation, Release 1.0

In the code, R = 0 gives better result, W7, W5 are set to be within [0, 1]. If W7 is greater than 1, then let §W; =
Wi —1,Wy =1and Wy = Wy + pdW; %, i.e. the runoff of top layer is put into second layer. p = 0.5 is the fraction
of top layer runoff that is put into second layer.

The time step is 1 hour, it takes several years to reach equalibrium offline.

8.5.2.3 Land diagnostics

<-Name->|Levs|<-parsing code->|<-— Units ——>|<— Tile (max=80c)

GrdSurfT| 1 |SM Lg | degC |Surface Temperature over land
GrdTemp | 2 | SM MG | degC |[Ground Temperature at each level
GrdEnth | 2 | SM MG | J/m3 |Ground Enthalpy at each level
GrdWater| 2 [SM P MG [0-1 |Ground Water (vs Field Capacity),,
—Fraction at each level

LdSnowH | 1 |SM P Lg | m | Snow Thickness over land

LdSnwAge | 1 |SM P Lg |'s |Snow Age over land

RUNOFF | 1 |SM Ll Im/s |[Run-0Off per surface unit

EnRunOff| 1 |SM L1 [W/m"2 |[Energy flux associated with run-Off
landHF1x | 1 |SM Lg |W/m"2 |net surface downward Heat flux over
—land

landPmE | 1 |SM Lg |kg/m"~2/s |[Precipitation minus Evaporation over
—land

1dEnFxPr| 1 |sSM Lg [W/m"2 |[Energy flux (over land) associated

—with Precip (snow,rain)

8.5.2.4 References

Hansen J. et al. Efficient three-dimensional global models for climate studies: models I and II. Monthly Weather
Review, vol.111, no.4, pp. 609-62, 1983

8.5.2.5 Experiments and tutorials that use land

* Global atmosphere experiment in aim.51_cs verification directory.

8.5.3 Fizhi: High-end Atmospheric Physics

8.5.3.1 Introduction

The fizhi (high-end atmospheric physics) package includes a collection of state-of-the-art physical parameterizations
for atmospheric radiation, cumulus convection, atmospheric boundary layer turbulence, and land surface processes.
The collection of atmospheric physics parameterizations were originally used together as part of the GEOS-3 (God-

dard Earth Observing System-3) GCM developed at the NASA/Goddard Global Modelling and Assimilation Office
(GMAO).

8.5.3.2 Equations

Moist Convective Processes:

220 Chapter 8. Packages | - Physical Parameterizations

MITgcm Documentation, Release 1.0

Sub-grid and Large-scale Convection

Sub-grid scale cumulus convection is parameterized using the Relaxed Arakawa Schubert (RAS) scheme of [MS92],
which is a linearized Arakawa Schubert type scheme. RAS predicts the mass flux from an ensemble of clouds. Each
subensemble is identified by its entrainment rate and level of neutral bouyancy which are determined by the grid-scale
properties.

The thermodynamic variables that are used in RAS to describe the grid scale vertical profile are the dry static energy,
s = ¢pT + gz, and the moist static energy, h = ¢,T" + gz + Lq. The conceptual model behind RAS depicts each
subensemble as a rising plume cloud, entraining mass from the environment during ascent, and detraining all cloud air
at the level of neutral buoyancy. RAS assumes that the normalized cloud mass flux, 1, normalized by the cloud base
mass flux, is a linear function of height, expressed as:

On(z) On(P*)

=\ or

0z P~

N
g

where we have used the hydrostatic equation written in the form:

0z _ o

oPs g
The entrainment parameter, A, characterizes a particular subensemble based on its detrainment level, and is obtained
by assuming that the level of detrainment is the level of neutral buoyancy, ie., the level at which the moist static energy
of the cloud, h., is equal to the saturation moist static energy of the environment, h*. Following /[MS92], A may be
written as

hp — %,
P N o
2 0(h3y — h)dP

Cp

g

where the subscript B refers to cloud base, and the subscript D refers to the detrainment level.

The convective instability is measured in terms of the cloud work function A, defined as the rate of change of cumulus
kinetic energy. The cloud work function is related to the buoyancy, or the difference between the moist static energy

in the cloud and in the environment:
Pe he — h*
A= / 1 [c } dp*
Pp 1 + ’}/ P K
L 9q*

where v is == %= obtained from the Claussius Clapeyron equation, and the subscript c refers to the value inside the
P
cloud.

To determine the cloud base mass flux, the rate of change of A in time due to dissipation by the clouds is assumed to
approximately balance the rate of change of A due to the generation by the large scale. This is the quasi-equilibrium
assumption, and results in an expression for mp:

dA
B W‘ls

K

where K is the cloud kernel, defined as the rate of change of the cloud work function per unit cloud base mass flux,
and is currently obtained by analytically differentiating the expression for A in time. The rate of change of A due to
the generation by the large scale can be written as the difference between the current A(t 4+ At) and its equillibrated
value after the previous convective time step A(t), divided by the time step. A(t) is approximated as some critical
Acrit, computed by Lord (1982) from insitu observations.

mp =

The predicted convective mass fluxes are used to solve grid-scale temperature and moisture budget equations to de-
termine the impact of convection on the large scale fields of temperature (through latent heating and compensating
subsidence) and moisture (through precipitation and detrainment):

00 mp 0s

ot . N aq,P"“”éTp

8.5. Atmosphere Packages 221

MITgcm Documentation, Release 1.0

and
9q —omB (%f§)
61&07 Ln(‘)p dp

where 0 = %,

P = (p/po), and « is the relaxation parameter.
As an approximation to a full interaction between the different allowable subensembles, many clouds are simulated
frequently, each modifying the large scale environment some fraction « of the total adjustment. The parameterization

thereby “relaxes” the large scale environment towards equillibrium.

In addition to the RAS cumulus convection scheme, the fizhi package employs a Kessler-type scheme for the re-
evaporation of falling rain /SMS88], which correspondingly adjusts the temperature assuming h is conserved. RAS in
its current formulation assumes that all cloud water is deposited into the detrainment level as rain. All of the rain is
available for re-evaporation, which begins in the level below detrainment. The scheme accounts for some microphysics
such as the rainfall intensity, the drop size distribution, as well as the temperature, pressure and relative humidity of
the surrounding air. The fraction of the moisture deficit in any model layer into which the rain may re-evaporate is
controlled by a free parameter, which allows for a relatively efficient re-evaporation of liquid precipitate and larger
rainout for frozen precipitation.

Due to the increased vertical resolution near the surface, the lowest model layers are averaged to provide a 50 mb thick
sub-cloud layer for RAS. Each time RAS is invoked (every ten simulated minutes), a number of randomly chosen
subensembles are checked for the possibility of convection, from just above cloud base to 10 mb.

Supersaturation or large-scale precipitation is initiated in the fizhi package whenever the relative humidity in any grid-
box exceeds a critical value, currently 100 %. The large-scale precipitation re-evaporates during descent to partially
saturate lower layers in a process identical to the re-evaporation of convective rain.

Cloud Formation

Convective and large-scale cloud fractons which are used for cloud-radiative interactions are determined diagnostically
as part of the cuamulus and large-scale parameterizations. Convective cloud fractions produced by RAS are proportional
to the detrained liquid water amount given by

C

Frag = min [ZRZAS,LO]

where .. is an assigned critical value equal to 1.25 g/kg. A memory is associated with convective clouds defined by:

Atpas

FRas = min {FRAS +(1— VEras, 1.0}

where F'r 45 is the instantanious cloud fraction and Fggé is the cloud fraction from the previous RAS timestep. The

memory coefficient is computed using a RAS cloud timescale, 7, equal to 1 hour. RAS cloud fractions are cleared
when they fall below 5 %.

Large-scale cloudiness is defined, following Slingo and Ritter (1985), as a function of relative humidity:
RH — RH.* Lo
1—RH, T
where

RH, & = & 1-(1-5)(2-42 $)r s & = & p/psurt T & = & () RHpin & = & 0.75 & = & 0.573285 .

Frs = min

These cloud fractions are suppressed, however, in regions where the convective sub-cloud layer is conditionally unsta-
ble. The functional form of RH. is shown in Figure 8.8

222 Chapter 8. Packages | - Physical Parameterizations

MITgcm Documentation, Release 1.0

RHc
F
100
200
200
et
E 500
o/
200
a0
] \:\D\
H"m
e LT nm nn Lt 1] 0LEh HTW 1.1¢3 -

Figure 8.8: Critical Relative Humidity for Clouds.

223

8.5.

Atmosphere Packages

MITgcm Documentation, Release 1.0

The total cloud fraction in a grid box is determined by the larger of the two cloud fractions:
Forp = max [Fras, Frs] -

Finally, cloud fractions are time-averaged between calls to the radiation packages.
Radiation:

The parameterization of radiative heating in the fizhi package includes effects from both shortwave and longwave
processes. Radiative fluxes are calculated at each model edge-level in both up and down directions. The heating
rates/cooling rates are then obtained from the vertical divergence of the net radiative fluxes.

The net flux is
F=F"-Ft

where F is the net flux, F'" is the upward flux and F* is the downward flux.

The heating rate due to the divergence of the radiative flux is given by

dpe, T OF
ot 0z
or
or _ g OF
ot cpm 00

where g is the accelation due to gravity and ¢, is the heat capacity of air at constant pressure.

The time tendency for Longwave Radiation is updated every 3 hours. The time tendency for Shortwave Radiation is
updated once every three hours assuming a normalized incident solar radiation, and subsequently modified at every
model time step by the true incident radiation. The solar constant value used in the package is equal to 1365 W /m?
and a C'O5 mixing ratio of 330 ppm. For the ozone mixing ratio, monthly mean zonally averaged climatological values
specified as a function of latitude and height /RSGS87] are linearly interpolated to the current time.

Shortwave Radiation

The shortwave radiation package used in the package computes solar radiative heating due to the absoption by wa-
ter vapor, ozone, carbon dioxide, oxygen, clouds, and aerosols and due to the scattering by clouds, aerosols, and
gases. The shortwave radiative processes are described by [Cho90][Cho92]. This shortwave package uses the Delta-
Eddington approximation to compute the bulk scattering properties of a single layer following King and Harshvardhan
(JAS, 1986). The transmittance and reflectance of diffuse radiation follow the procedures of Sagan and Pollock (JGR,
1967) and [LH74].

Highly accurate heating rate calculations are obtained through the use of an optimal grouping strategy of spectral
bands. By grouping the UV and visible regions as indicated in Table 8.10, the Rayleigh scattering and the ozone
absorption of solar radiation can be accurately computed in the ultraviolet region and the photosynthetically active
radiation (PAR) region. The computation of solar flux in the infrared region is performed with a broadband param-
eterization using the spectrum regions shown in Table 8.11. The solar radiation algorithm used in the fizhi package
can be applied not only for climate studies but also for studies on the photolysis in the upper atmosphere and the
photosynthesis in the biosphere.

224 Chapter 8. Packages | - Physical Parameterizations

MITgcm Documentation, Release 1.0

Table 8.10: UV and Visible Spectral Regions used in shortwave radiation

package.
UV and Visible Spectral Regions
Region Band Wavelength (micron)
UV-C | 175 -.225
225 - .245
2.
.260 - .280
245 - 260
3.
UV-B 4 .280 - .295
295 - 310
5.
310 -.320
6.
UV-A 7 .320 - .400
PAR 8 400 - 700

Table 8.11: Infrared Spectral Regions used in shortwave radiation pack-

age.
Infrared Spectral Regions
Band Wavenumber (cm~") | Wavelength (micron)
1 1000-4400 2.27-10.0
2 4400-8200 1.22-2.27
3 8200-14300 0.70-1.22

Within the shortwave radiation package, both ice and liquid cloud particles are allowed to co-exist in any of the model
layers. Two sets of cloud parameters are used, one for ice paticles and the other for liquid particles. Cloud parameters
are defined as the cloud optical thickness and the effective cloud particle size. In the fizhi package, the effective radius
for water droplets is given as 10 microns, while 65 microns is used for ice particles. The absorption due to aerosols is
currently set to zero.

To simplify calculations in a cloudy atmosphere, clouds are grouped into low (p > 700 mb), middle (700 mb > p >
400 mb), and high (p < 400 mb) cloud regions. Within each of the three regions, clouds are assumed maximally
overlapped, and the cloud cover of the group is the maximum cloud cover of all the layers in the group. The optical
thickness of a given layer is then scaled for both the direct (as a function of the solar zenith angle) and diffuse beam
radiation so that the grouped layer reflectance is the same as the original reflectance. The solar flux is computed
for each of eight cloud realizations possible within this low/middle/high classification, and appropriately averaged to
produce the net solar flux.

8.5. Atmosphere Packages 225

MITgcm Documentation, Release 1.0

Longwave Radiation

The longwave radiation package used in the fizhi package is thoroughly described by . As described in that document,
IR fluxes are computed due to absorption by water vapor, carbon dioxide, and ozone. The spectral bands together with
their absorbers and parameterization methods, configured for the fizhi package, are shown in Table 8.12.

Table 8.12: IR Spectral Bands, Absorbers, and Parameterization Method
(from [CS94])

IR Spectral Bands
Band Spectral Range (cm™") | Absorber Method
1 0-340 H5O0 line T
2 340-540 H2O line T
3a 540-620 H-O line K
3b 620-720 H5O continuum | S
3b 720-800 CO, T
4 800-980 H2O line K
H5O continuum | S
H5O line K
5 980-1100 H5O continuum | S
(OF T
6 1100-1380 H2O line K
H5O continuum | S
7 1380-1900 H5O line T
8 1900-3000 H5O line K
K: k-distribution method with linear pressure scaling
T: Table look-up with temperature and pressure scaling
S: One-parameter temperature scaling

The longwave radiation package accurately computes cooling rates for the middle and lower atmosphere from 0.01 mb
to the surface. Errors are < 0.4 C day~! in cooling rates and < 1% in fluxes. From Chou and Suarez, it is estimated
that the total effect of neglecting all minor absorption bands and the effects of minor infrared absorbers such as nitrous
oxide (N:math:_20), methane (CH:math:_4), and the chlorofluorocarbons (CFCs), is an underestimate of ~ 5 W/m?
in the downward flux at the surface and an overestimate of ~ 3 W/m? in the upward flux at the top of the atmosphere.

Similar to the procedure used in the shortwave radiation package, clouds are grouped into three regions catagorized as
low/middle/high. The n